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ABSTRACT

In this work, we advocate for the importance of singular learning theory (SLT) as it pertains to the
theory and practice of variational inference in Bayesian neural networks (BNNs). To begin, using
SLT, we lay to rest some of the confusion surrounding discrepancies between downstream predictive
performance measured via e.g., the test log predictive density, and the variational objective. Next, we
use the SLT-corrected asymptotic form for singular posterior distributions to inform the design of the
variational family itself. Specifically, we build upon the idealized variational family introduced in
Bhattacharya et al. [2020] which is theoretically appealing but practically intractable. Our proposal
takes shape as a normalizing flow where the base distribution is a carefully-initialized generalized
gamma. We conduct experiments comparing this to the canonical Gaussian base distribution and
show improvements in terms of variational free energy and variational generalization error.

Keywords Normalizing Flow · Real Log Canonical Threshold · Singular Learning Theory · Singular Models · Test
log-likelihood · Variational Free Energy · Variational Inference · Variational Generalization Error

1 Introduction

A Bayesian neural network (BNN) Mackay [1995] is a neural network endowed with a prior distribution ϕ on its
weights w. Despite their theoretical appeal Lampinen and Vehtari [2001], Wang and Yeung [2020], applying BNNs in
practice is not without significant challenges. MCMC and its variants, while widely considered the gold standard, can
be prohibitively expensive in terms of computation. On the other hand, fast alternatives such as variational inference
may result in uncontrolled approximations.

In this work, we mine insights from singular learning theory (SLT) Watanabe [2009] to explain and improve upon
certain aspects of BNNs. Roughly speaking, a model is (strictly) singular if the parameter-to-model mapping is not
one-to-one and the likelihood function does not look Gaussian1. That neural networks are singular is well documented
Sussmann [1992], Watanabe [2000, 2001], Fukumizu [2003], Watanabe [2007]. We refer the readers to Wei et al.
[2022] for a detailed proof in the case of a standard feedforward network. The singular nature of BNNs has interesting
implications for the posterior distribution, see Figure 1.

Let (x, y) denote the input-target pair modeled jointly as p(x, y|w) = p(y|x,w)p(x) where w ∈ Rd is the model
parameter. Let p(y|x,w) be a neural network model with functional model f , by which we mean y = f(x,w) + ε
where ε is some random variable. For example, if we have Gaussian additive noise ε, the conditional distribution could
be modelled as N (y|f(x,w), σ2I) where f is a feedforward ReLU network with weights w.

The central quantity of interest in BNNs is the intractable posterior distribution over the neural network weights,

p(w|Dn) =

∏n
i=1 p(yi|xi, w)ϕ(w)

Z(n)
,

1These features should not be viewed as pathological, see “Deep learning is singular and that’s good" by Wei et al. [2022].
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Figure 1: Posterior density contour plot for a 2D tanh-regression model, p(y|x, a, b) ∝ exp(y − a tanh(bx)). The
white diamond marks the true parameter (a0, b0) used to generate the dataset Dn. Each row shows a different true
distribution, while each column shows a different sample size n. When a0b0 = 0 as in the second row, the set of true
parameters W0 is not a singleton and contains a singularity at the origin. It is worth noticing that, for a singular model,
even when the truth is not at a singularity (first row), the posterior is still far from being locally Gaussian even at sample
size n = 5000.

where Dn = {(xi, yi)}ni=1 is a dataset of n input-output pairs. The normalizing constant,

Z(n) =

∫ n∏
i=1

p(yi|xi, w)ϕ(w) dw,

is variously known as the model evidence and the marginal likelihood. Define the empirical entropy of the training
data,

Sn = − 1

n

n∑
i=1

log p0(yi|xi).

We shall call
Z̄(n) = − logZ(n)− nSn

the normalized evidence. Let us call F (n) := − logZ(n) the Bayes free energy and F̄ (n) := − log Z̄(n) its
normalized version.

Unlike prediction in traditional neural networks, prediction in BNNs proceeds by marginalization, i.e., averaging over
all possible values of the network weights. Namely, prediction in BNNs makes use of the Bayes posterior predictive
distribution,

p(y|x,Dn) :=

∫
p(y|x,w)p(w|Dn) dw. (1)

With (1), we can calculate prediction uncertainties as well as obtain better calibrated predictions Heek [2018], Osawa
et al. [2019], Maddox et al. [2019].

In Section 3, we recapitulate from the perspective of SLT the predictive advantages of BNNs over traditional neural
networks. Specifically, SLT shows that the Bayes posterior predictive distribution in (1) has lower generalization error
compared to MLE or MAP point estimates.

Despite compelling arguments for employing BNNs, we must reckon with the fact that they can only ever be applied
approximately. Among approximate techniques, a major class is represented by scaling classic MCMC to modern
settings of large datasets and deep neural networks Welling and Teh [2011], Chen et al. [2014], Zhang et al. [2020].
In this paper, we instead turn our focus to variational inference, which is particularly suited to scaling BNNs to large
datasets.

All variational inference techniques are characterized by two ingredients. First, a family of densities Q, often called the
variational family, is posited. Second, some q∗ ∈ Q is found via optimization according to some criterion that measures
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closeness to the desired target density. In this work, we seek to approximate the posterior density and we will employ
the conventional Kullback-Leibler divergence. This leads to the optimization problem,

min
q∈Q

KL(q(w) ‖ p(w|Dn)). (2)

This is equivalent to minimizing the so-called normalized2 variational free energy (VFE),

F̄vb(n) := EqnKn(w) + KL(q(w) ‖ ϕ(w)).

It is easy to see that F̄vb(n) ≥ F̄ (n) with equality if and only if the variational distribution is exactly equal to the
posterior. Readers are likely more familiar with the variational objective of maximizing the so-called evidence lower
bound (ELBO) which is simply related to the (normalized) VFE via ELBO = −F̄vb(n).

Let q∗ ∈ Q be a minimizer of (2). et us call the variational approximation to (1) given by

pvb(y|x,Dn) :=

∫
p(y|x,w)q∗(w) dw, (3)

the induced predictive distribution. We can measure the predictive accuracy of pvb using once again the KL
divergence, i.e.,

Gn(pvb(y|x,Dn)) := KL(p0(y|x) ‖ pvb(y|x,Dn)),

which we shall call the variational generalization error (VGE). Per the discussion in Section 3, this is, up to a
constant and a sign flip, nothing more than the typical test log predictive density Gelman et al. [2014] commonly
employed in variational inference evaluation.

We shall see in Section 4 that, surprisingly, the VGE may be arbitrarily high even for a variational family whose
minimum VFE is close to optimality. In other words, it is not guaranteed that minimizing (2) results in good downstream
predictive performance. The outlook is not entirely bleak. Depending on the relationship between two critical quantities
of variational inference – the MVFE coefficient λvfe and the VGE coefficient λvge – the generalization error of the
induced predictive distribution may be controllable via minimizing the VFE.

Clarification of the relationship between the two variational coefficients for most common variational learning problems
is an open problem, which we leave aside for future work. We will assume the variational coefficients are related
favorably, in a manner which will be made clear in Section 4, and proceed to design a variational family whose
variational approximation gap is small. The proposal is predicated on an important SLT result which states that,
roughly speaking, the posterior distribution over the parameters of a singular model is not asymptotically Gaussian, but
can still be put into an explicit standard form via the resolution of singularities.

2 Singular learning theory

In this section, we give a succinct overview of key concepts from SLT. We focus in particular on what SLT has to say
about the behavior of the posterior distribution in strictly singular models. Let us assume the parameter space W is a
compact set in Rd and p0(x, y) = p0(y|x)p(x) is the true data-generating mechanism. Throughout, we suppose there
exists w0 ∈ W such that p0(y|x) = p(y|x,w0). In the parlance of SLT, this condition is known as realizability. Let
ϕ(w) be a compactly-supported prior. We shall refer to (p(·, ·), p0(·, ·), ϕ(·)) as a model-truth-prior triplet. The roles
played by compactness and realizability in singular learning theory are discussed in Appendix A.

Define K(w) to be the Kullback-Leibler divergence between the truth and the model, i.e.,

K(w) := KL(p0(x, y) ‖ p(x, y|w)).

Following Watanabe [2009], we say a model is regular if 1) it is identifiable, i.e., the map w 7→ p(·, ·|w) from parameter
to model is one-to-one and 2) its Fisher information matrix I(w) is positive definite for arbitrary w ∈ W . We call a
model strictly singular if it is not regular. The term singular will refer to either regular or strictly singular models. See
Figure 1 for an example of a strictly singular model with two truth settings. This figure illustrates an important lesson:
for strictly singular models, even when the true parameter set W0 := {w : K(w) = 0} does not contain singularities,
the posterior distribution is still far from Gaussian.

The following theorem from Watanabe [2009], adapted for notational consistency, gives precise conditions for the
existence of resolution maps, algebraic-geometrical transformations which enables K(w) to be locally written as a

2Throughout this paper, we work with normalized quantities for ease of exposition. The asymptotics presented hold equally for
the unnormalized counterparts.
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monomial, i.e., a product of powers of variables such as in the right-hand-side of (4). The result is itself based on
Hironaka’s resolution of singularities, a celebrated result in modern algebraic geometry.

To prepare, let Wε = {w ∈W : K(w) ≤ ε} for some small positive constant ε and W (R)
ε be some real open set such

that Wε ⊂ W
(R)
ε . The theorem below will make use of the multi-index notation: for a given ξ = (ξ1, . . . , ξd) ∈ Rd,

define wk := wk11 · · ·w
kd
d where the multi-index k = (k1, . . . , kd) with each kj a nonnegative integer. Due to space

constraints, Fundamental Conditions I and II required below are stated and discussed in Appendix A.

Theorem 2.1 (Theorem 6.5 of Watanabe [2009]). Suppose the model-truth-prior triplet (p, p0, ϕ) satisfies Fundamental
Conditions I and II with s = 2. We can find a real analytic manifold M (R) and a proper and real analytic map
g : M (R) →W

(R)
ε such that

1. M = g−1(Wε) is covered by a finite set M = ∪αMα where Mα = [0, b]d.

2. In each Mα,
K(g(ξ)) = ξ2k = ξ2k1

1 · · · ξ2kd
d , (4)

where kj ∈ N, j = 1, . . . , d are such that not all kj are zero.

3. There exists a C∞ function b(ξ) such that

ϕ(g(ξ))|g′(ξ)| = ξhb(ξ) = ξh1
1 · · · ξ

hd

d b(ξ), (5)

where hj ∈ N, j = 1, . . . , d, |g′(ξ)| is the absolute value of the determinant of the Jacobian and b(ξ) > c > 0
for ξ ∈ [0, b]d.

In Theorem 2.1 we have suppressed the dependency on the manifold chart index α, but the reader should keep in mind
that the maps g and the multi-indices are all indexed by α. It is also important to recognize that none of these said
quantities are unique for a given triplet (p, p0, ϕ).

A crucial quantity that appears in SLT is a rational number in (0, d/2] known as the real log canonical threshold
(RLCT). Let {Mα : α} be as in Theorem 2.1 and define

λj =
hj + 1

2kj
, j = 1, . . . , d

where hj and kj are the entries of the multi-indices h and k in a local coordinate Mα. When kj = 0, λj is taken to be
infinity.

Uniquely associated to a triplet (p, p0, ϕ) are its real log canonical threshold (RLCT) and its multiplicity defined,
respectively, as

λ = min
α

min
j∈1,...,d

λj , m = max
α

#{j : λj = λ}. (6)

Let {α∗} be the set of those local coordinates in which both the min and max in (6) are attained. Watanabe [2009]
calls this set the essential coordinates and the corresponding collection {Mα} the essential charts.

If {w : K(w) = 0, ϕ(w) > 0} is not the empty set, the RLCT of a model-truth-prior triplet is at most d/2 [Watanabe,
2009, Theorem 7.2]. When the model is regular, the RLCT is exactly equal to d/2 and the multiplicitym = 1 [Watanabe,
2009, Remark 1.15]. In fact, (twice the) RLCT may be regarded as the effective degrees of freedom in strictly singular
models [Wei et al., 2022]. The RLCT also shows up in important asymptotic results, see (10) and (11).

Henceforth, to make clear that the RLCT and multiplicity are invariants of the model-truth-prior triplet, we shall write
λ(p, p0, ϕ) and m(p, p0, ϕ) to mark this dependence. In Appendix B, we recall a simple toy network, a two-parameter
tanh network, where the resolution map, the RLCT, and the multiplicity can be calculated explicitly.

2.1 Posterior distribution in singular models

The posterior distribution in strictly singular models is decidedly not Gaussian. The correct asymptotic form can be
derived using SLT. For a particular manifold chart index α, let us apply the transformation gα(ξ) = w and rewrite the
posterior distribution in the new coordinate ξ,

p(ξ|Dn) =
exp(−nKn(gα(ξ)))ϕ(gα(ξ))|g′α(ξ)|

Z̄(n)
, (7)
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with

Kn(w) =
1

n

n∑
i=1

log
p0(yi|xi)
p(yi|xi, w)

denoting the sample average log likelihood ratio. Note Kn(w) is the empirical counterpart to K(w).

By (cheekily) substituting (4) (5) into p(ξ|Dn) in (7), we obtain that the posterior distribution for large n, in the chart
Mα, is described as a so-called standard form Watanabe [2018]:

exp(−nξ2k1
1 ξ2k2

2 · · · ξ2kd
d )|ξh1

1 · · · ξ
hd

d |b(ξ).
In other words, the posterior distribution over the parameters of a singular model can be transformed into a mixture
of standard forms, asymptotically. In Figure 1 we display the singular posterior density contour plot for a toy 2D
tanh-neural network in two settings of the true distribution.

3 The Bayes posterior predictive distribution

Let the generalization error of some predictive distribution p̂n(y|x), estimated from a training set Dn, be measured
using the KL divergence:

Gn(p̂n(y|x)) := KL(p0(y|x)p(x) ‖ p̂n(y|x)p(x)) (8)
In the machine learning community, this goes by another name: Gn(·) is, up to a constant and a sign flip, the population
counterpart to the commonly reported test log-likelihood, aka the predictive log-likelihood or test log-predictive
density. This can be seen by writing

Ĝn = − 1

n′

∑
(x,y)∈Dn′

(log p0(y|x)− log p̂n(y|x)) (9)

where Dn′ is an independent dataset.1 According to Theorems 1.2 and 7.2 in Watanabe [2009], we have, for the Bayes
posterior predictive distribution (1),

EGn(p(y|x,Dn)) = λ(p, p0, ϕ)/n+ o(1/n) (10)

where the expectation is taken with respect toDn. We will call the left hand side (10) the expected Bayes generalization
error. This can be contrasted to the expected generalization error of MLE (and similarly of MAP), which Theorem 6.4
of Watanabe [2009] shows to be EGn(p(y|x, ŵmle)) = S/n+ o(1/n) where S, the maximum of a Gaussian process,
can be much larger than λ(p, p0, ϕ). The situation is markedly different for regular models, where differences between
the three estimators become negligible in the large-n regime.

We briefly outline the derivation of (10) as it will inform the narrative on the VGE in the next section. First, for the
normalized Bayes free energy, under the Fundamental Conditions I and II discussed in A, it was proven in [Watanabe,
2009, Main Theorem 6.2] that the following asymptotic expansion holds

F̄ (n) = λ(p, p0, ϕ) log n+ (m− 1) log log n+OP (1). (11)

The result in (10) is then proven using the above expansion together with the well known relationship between the
Bayes generalization error and the (normalized) Bayes free energy [Watanabe, 2009, Theorem 1.2]:

EGn(p(y|x,Dn)) = EF̄ (n+ 1)− EF̄ (n). (12)

where on the right-hand side, the first expectation is with respect to dataset Dn+1 and the second Dn. Due to this
relationship, the Bayes free energy shares the same coefficient as the Bayes generalization error.

4 A tale of two variational coefficients

Most applications of variational inference in BNNs labor under the following implicit assumptions: 1) optimizers of the
variational objective in (2) have good induced predictive distributions, and 2) two variational families can be compared
according to the performance of their induced predictive distributions. A look at the experimental sections of various
works on variational BNNs reveal that these assumptions underlie standard practice Blundell et al. [2015], Rezende and
Mohamed [2015], Louizos and Welling [2016, 2017], Osawa et al. [2019], Swiatkowski et al. [2020]. We shall see in
this section that these two assumptions do not always hold.

Let us associate to a variational family Q its normalized minimum variational free energy (MVFE),

F̄ ∗vb(n) := min
q∈Q

F̄vb(n).

5
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Asymptotics for the MVFE have so far been addressed on a case-by-case basis for certain models and certain variational
families, e.g., Gaussian mean-field variational families for reduced rank regression Nakajima and Watanabe [2007],
nonnegative matrix factorization Kohjima and Watanabe [2017], Hayashi [2020], normal mixture model Watanabe and
Watanabe [2006], hidden Markov model Hosino et al. [2005]. In all the cited instances above, the asymptotic expansion
of the average normalized MVFE takes the form

EF̄ ∗vb(n) = λvfe log n+ o(log n) (13)

where the expectation is taken over datasets Dn. Note that λvfe ≥ λ(p, p0, ϕ) necessarily Nakajima and Watanabe
[2007]. Because the variational approximation gap,

G := F̄ ∗vb(n)− F̄ (n), (14)

is the difference of the (normalized) MVFE and the (normalized) Bayes free energy, the gap boils down to the difference
between two coefficients:

G ≈ (λvfe − λ(p, p0, ϕ)) log n.

Now, under some natural conditions3, the VGE admits the asymptotic expansion,

EGn(pvb(y|x,Dn)) = λvge/n+ o(1/n). (15)

Importantly, λvge 6= λvfe in general, e.g., Nakajima and Watanabe [2007]. This is in contrast to the Bayesian posterior
predictive distribution in (1), where the coefficient of the leading O(1/n) term is precisely the RLCT, λ(p, p0, ϕ). That
λvge 6= λvfe results from the fact that the relationship (12) is not valid when a variational approximation to the posterior
is employed.

In Figure 2a, we illustrate the three possible configurations of the coefficients λ(p, p0, ϕ), λvfe, λvge for a given variational
family Q and a model-truth-prior triplet. When λvfe > λvge, we call the setting favorable since minimizing the VFE
offers control over the VGE. When λvfe < λvge, we call this unfavorable since achieving even a small variational
approximation gap could result in an induced predictive distribution with high generalization error. The distribution of
favorable versus unfavorable settings in practice is unclear, as the exact relationship between λvfe and λvge has been
derived in a limited number of works. The results in Nakajima and Watanabe [2007] on linear neural networks, aka
reduced rank regression, show there are both favorable and unfavorable settings depending on the input and output
dimension, the number of hidden units, and a rank measurement on the truth.

Note that even in favorable settings, we must be careful when comparing two variational families Q1 and Q2. Figure
2b illustrates a scenario where the family Q1 incurs a smaller variational approximation gap than Q2, but the induced
predictive distribution ofQ1 has λvge higher than that ofQ2. This shows that comparing different variational approxima-
tions by their test log predictive density is fraught with potential misinterpretations. In order to control the downstream
predictive performance, it is thus important to find a variational family with a small approximation gap, so that we can
inherit (and sometimes even beat!) the predictive advantages of the exact Bayes posterior predictive distribution (1), i.e.,
achieve λvge < λ(p, p0, ϕ).

5 Related work

Although the perspective on offer here – that the discrepancy between test log predictive density and the variational
objective amounts to the relationship between two variational coefficients – is novel, we are not the first to point out
this general phenomenon in variational inference Yao et al. [2018], Huggins et al. [2020], Deshpande et al. [2022],
Dhaka et al. [2020]. This phenomenon is also documented in the specific setting of variational inference for BNNs
Heek [2018], Yao et al. [2019], Krishnan and Tickoo [2020], Foong et al. [2020]. For instance, Foong et al. [2020]
demonstrated in experiments that optimizing the ELBO may not lead to accurate predictive means or variances.

Another area of active research in variational BNNs is the design of the variational family itself. For the large part, the
mean-field family of fully factorized Gaussian distributions is still predominant in the general practice of variational
inference [Graves, 2011, Blundell et al., 2015, Hernandez-Lobato et al., 2016, Li and Turner, 2016, Khan et al., 2018,
Sun et al., 2019]. The mean-field assumption is mostly adopted for computational ease, though the limitations are well
known [MacKay, 1992, Coker et al., 2022]. Moving beyond mean-field Gaussian, we can find works that make use of
more realistic covariance structures [Louizos and Welling, 2016, Zhang et al., 2018] or more expressive approximating
families, e.g., via normalizing flows [Louizos and Welling, 2017, Papamakarios et al., 2021].

Finally, we note there have been a few recent works that recognize the non-identifiability of deep learning models
Moore [2016], Pourzanjani et al. [2017], Kurle et al. [2022]. These works however seem to treat the non-identifiability
as an issue to be fixed.

3The predictive distribution should be consistent as n goes to infinity, see the discussion in Chapter 13 of Nakajima et al. [2019]
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λ(p, p0, ϕ) λvfe

λvge λvge λvge

(a) The variational approximation gap G is deter-
mined by λvfe−λ(p, p0, ϕ), highlighted in red. Three
possibilities are illustrated for the VGE coefficient
λvge. When λvge < λvfe, we call the situation favor-
able as minimizing VFE offers control of VGE.

λ(p, p0, ϕ) λvfe(Q2)λvge(Q2)

λ(p, p0, ϕ) λvfe(Q1)λvge(Q1)

(b) Two variational familiesQ1 andQ2 are illustrated
in which the former achieves smaller MVFE than
the latter (which is a good thing), but the induced
predictive distributions do not inherit this ordinality
as λvge(Q2) is lower than λvge(Q1).

Figure 2: We show in these schematics that evaluating variational approximations to BNNs according to their induced
predictive distribution is fraught with potential misinterpretations.

6 Methodology

To achieve a good variational approximation, conventional wisdom says to makeQ as “expressive" as possible. We will
approach the design of the variational family in a more principled manner using SLT. To this end, we rely on recent
work in Bhattacharya et al. [2020] which leveraged SLT to produce an idealized variational family as follows. Let Q0

be a family consisting of generalized gamma distributions in Rd:

Q0 = {q0(ξ|λ,k,β) =

d∏
j=1

qj0(ξj |λj , kj , βj)} (16)

where
qj0(ξj |λj , kj , βj) ∝ ξ

2kjλj−1
j exp(−βjξ

2kj
j )1[0,1](ξj)

for λ ∈ Rd>0,k ∈ Rd>0,β ∈ (0,∞)d. Henceforth, let g := gα where α is such that Mα is an essential chart. In
other words, we are fixing a resolution map g, working in a fixed essential chart domain, and a coordinate ξ on that
domain that makes K(g(ξ)) a monomial as a function from Rd → Rd. The idealized variational family of Bhattacharya
et al. [2020] is given as the pushforward of base distributions q0 ∈ Q0 by said map g:

Q = {g]q0 : q0 ∈ Q0}. (17)

We refer to this as an idealized variational family for the simple fact that the resolution map g, though its existence is
guaranteed, is almost never tractable except in the simplest model-truth-prior triplets. Also note that although the family
Q0 is mean-field, (17) is not.

To study the variational approximation gap incurred by the idealized family (17), we will first introduce some definitions
to help us rewrite the gap G in notation that is consistent with Bhattacharya et al. [2020]. Define

Ψn(q0) = −Eq0nKn(g(ξ))−KL(q0(ξ) ‖ ϕ(g(ξ))|g′(ξ)|) (18)

See Appendix C for the derivation that the variational approximation gap in (14) is equivalent to

G = log Z̄(n)− sup
q0∈Q0

Ψn(q0). (19)

Following Bhattacharya et al. [2020], we consider the deterministic approximation gap corresponding to (19). This is
accomplished by replacing Kn with K, leading to

Ψ(q0) := −Eq0nK(g(ξ))−KL(q0(ξ) ‖ ϕ(g(ξ))|g′(ξ)|). (20)

7
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and
Z̄K(n) :=

∫
W

e−nK(w)ϕ(w) dw.

For our theoretical investigation, we shall concern ourselves with the deterministic variational approximation gap,

GK := log Z̄K(n)− sup
q0∈Q0

Ψ(q0). (21)

Techniques for generalizing the main result Theorem 6.1 which concerns GK to the stochastic world can be found in
Plummer [2021, Section 5.3.3].

We will appeal to large-n asymptotics to study the behavior of (21). Note that the study and deployment of BNNs is no
stranger to large-n asymptotics, both in early MacKay [1992] and recent Ritter et al. [2018] works. We proceed under
this tradition, but deviate from the crude (and incorrect) Laplace approximation that is often employed and instead use
the correct asymptotics provided by SLT.

6.1 Model evidence in singular models

To study the gap in (21), we begin by examining the asymptotic behavior of Z̄K(n). When the model is regular, we need

not bother with SLT and may find to leading order, Z̄K(n) = ϕ(w0)
√

(2π)d

detH(w0)n
−d/2 via the Laplace approximation.

This approximation, however, is egregiously inappropriate for strictly singular models, in particular neural networks
Wei et al. [2022]. Nonetheless, perhaps due to a sense that no tractable alternatives exist, the Laplace approximation is
seeing a resurgence of application in Bayesian deep learning Ritter et al. [2018], Immer et al. [2021].

For strictly singular models, the quantities Z(n), Z̄(n) and Z̄K(n) manifest as singular integrals, i.e., integrals of the
form

∫
W
e−nf(w)ϕ(w) dw where W ⊂ Rd is a compact semi-analytic subset, and f and ϕ are real analytic functions.

The behavior of a singular integral depends critically on the zeros of f . According to Theorem 6.7 in Watanabe [2009],
we find to leading order:

Z̄K(n) = C(p, p0, ϕ)n−λ(p,p0,ϕ)(log n)m(p,p0,ϕ)−1, (22)
where C(p, p0, ϕ) is a constant independent of n that we shall call the leading coefficient following the terminology of
Lin [2011]. Note that since λ(p, p0, ϕ) = d/2 and m(p, p0, ϕ) = 1 in regular models, (22) is a true generalization of
the Laplace approximation, holding for both regular and strictly singular models.

6.2 Bounding GK

We show in Lemma D.2 in Appendix D, that for large n, the following bound holds

sup
q0∈Q0

Ψ(q0) ≥ −λ(p, p0, ϕ) log n+ C (23)

where C is the constant free of n in Lemma D.2. This result is in the same spirit as [Bhattacharya et al., 2020, Theorem
3.1], except that we have improved on the tightness of their lower bound, which in turn allows us to devise better
initialization of the variational parameters. With Lemma D.2, we are now in a position to characterize the (deterministic)
variational approximation gap, GK .
Theorem 6.1 (Deterministic variational approximation gap). Suppose the model-truth-prior triplet (p, p0, ϕ) is such
that Theorem 2.1 holds. Let g = gα where α is such that Mα is an essential chart. On this essential chart, write
the local RLCTs λ̃j =

h̃j+1

2k̃j
, j = 1, . . . , d in descending order so that λ̃1 is the RLCT of the triplet (p, p0, ϕ), i.e.,

λ̃1 = λ(p, p0, ϕ). If the multiplicity of the triplet is 1, we have, for n large, GK ≤ logC(p, p0, ϕ)− C + o(1), where
the constant C is as given in Lemma D.2.

All that is needed for the proof of Theorem 6.1 is to put together the lower bound in Lemma D.2 with the fact that Z̄K(n)
admits the asymptotic expansion in (22). Even when m(p, p0, ϕ) 6= 1, there may be finite n situations when the two
terms (m(p, p0, ϕ)− 1) log log n and logC(p, p0, ϕ)− C are comparable. In such settings, the idealized variational
family Q in (17) could still perform well.

6.3 Learning to desingularize

In the preceding section, we studied the deterministic variational approximation gap of an idealized variational family.
Although Hironaka proved the existence of a resolution map and showed that it can be found by recursive blow up,
known algorithms for finding such resolutions, other than a few exceptional cases (such as those for toric resolutions),
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have complexity that vastly exceed existing computational capabilities. Thus we are precluded from directly applying
the idealized variational family.

This leads us to consider learning the resolution map g using an invertible architecture Gθ resulting in the variational
family

Q̂ = {Gθ]q0(λ,k,β) : β = (n, β2, . . . , βd)}. (24)

If the network is expressive enough, we can hope that g ∈ {Gθ : θ}, which would lead Q̂ to enjoy the theoretical
guarantee provided in Theorem 6.1. Note in (24) the first coordinate of β has been set to the sample size n. The
proof of Lemma D.2 reveals why we do so. Specifically, it is shown that the following parameters in q0 can achieve
Ψ(q0) = −λ(p, p0, ϕ) log n+ C:

λ1 = λ(p, p0, ϕ), k1 = k̃1, β1 = n

where k̃1 is as in Theorem 6.1. Note that λ(p, p0, ϕ) and k̃1 are unknown, but n is certainly known.

It might be readily apparent at this point that we have in Q̂ a standard normalizing flow, albeit with the base distribution
given by the generalized gamma distribution. To ease the computational cost, we fix the variational parameters
λ,k,β[−1] and absorb the learning of their optimal values into the invertible transformation Gθ. Note that this is in line
with standard practice, whereby normalizing flows adopt parameter-less base distributions.

To summarize, recognizing that the variational approximation gap can be theoretically studied using SLT allowed for
the design of a principled variational family which incurs a variational approximation gap that is independent of sample
size n, to leading order. To the best of our knowledge, no existing works on normalizing flows for BNNs theoretically
address the variational approximation gap. Furthermore, our results offer a new perspective on the benefits of using
normalizing flows for variational inference in BNNs.

7 Experiments

In the following set of experiments4, we will isolate and examine the effect of the base distribution. Specifically, we
compare the generalized gamma base distribution to the commonly-adopted Gaussian base distribution, holding the
architecture of Gθ fixed when we do so. At the outset, we expect that when Gθ is expressive enough, the effect of
the base distribution will be small. However, when Gθ is more limited (and thus less computationally expensive),
we conjecture the generalized gamma base distribution can “pick up the slack" and outperform the Gaussian base
distribution.

Table 1: The various model-truth-prior triplets considered in experiments. The truth is realizable. The prior over
network weights is standard Gaussian. The RLCT is only known in some of the cases.

model H dimw λ(p, p0, ϕ) dimx dimy

ffrelu 3 42 - 13 1
7 98 - 13 1
16 224 - 13 1
40 560 - 13 1

reducedrank 2 14 5.0 5 2
7 119 35.0 10 7
10 230 65.0 13 10
16 560 152.0 19 16

tanh 15 30 - 1 1
50 100 - 1 1
115 230 - 1 1
280 560 - 1 1

tanh (zero mean) 15 30 1.93 1 1
50 100 3.53 1 1
115 230 5.36 1 1
280 560 8.36 1 1

In line with our earlier discussion, the parameters of the base distributions are frozen throughout training, see Appendix
E for the initialization used. The invertible network Gθ is implemented as a sequence of affine coupling transformations.
We denote by base_numcouplingpairs_numhidden the variational family that results from pushing forward
the base distribution through Gθ with the said configuration, see Appendix E for a complete description of the
implementation. We consider a total of four different expressivity levels of Gθ from least to most: 2_4, 2_16, 4_4,
4_16.

The expression for the ELBO objective corresponding to each of the base distributions is given in (29) and (30) in
Appendix E. Details of the training procedure such as epochs, learning rate, and optimizer are also given there. Let q̂∗

4The code to reproduce our results is available at https://github.com/suswei/BNN_via_SLT.
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Figure 3: MVFE versus log n is displayed in the first column and VGE versus 1/n is displayed in the second. Each row
corresponds to a different model-truth-prior triplet. Line color indicates the expressiveness of the network Gθ, darker
being more expressive. Error bars represent mean, min and max over 30 draws of the training set Dn. The dashed line
is the least squares fit with λvfe and λvge coefficients and their R2 values displayed in legend.

be the variational distribution obtained at the end of training. Comparison of the base distributions, and hence the two
different normalizing flows, will be made according to normalized MVFE, F̄ ∗vb(n), and VGE, Gn(pvb(y|x,Dn). (For
both, the lower, the better.) We will also estimate the coefficients λvfe in (13) and λvge in (15), see Appendix E.

We consider four model-truth-prior triplets, summarized in Table 1, in which the truth is always realizable. In all four
triplets, the prior over the neural network weights is chosen to be the standard Gaussian following conventional practice
in BNNs Neal [1996], Bishop [2006]. Note, priors for BNNs are notoriously difficult to design and is an area under
active research Sun et al. [2019], Nalisnick et al. [2021].

7.1 Results

Due to space constraints, we only show a subset of the results in Figure 3; complete results can be found in Appendix E.
In the first column of Figure 3, we plot log n versus the normalized MVFE. First, we observe that when Gθ is not very
expressive, the generalized gamma resoundingly outperforms the Gaussian base distribution for the reduced rank and
ReLU experiments across all values of H in terms of achieving lower MVFE. (This can be better seen in Figure 8 in
Appendix E.) On the other hand, as conjectured, when Gθ is most expressive at the 4_16 configuration, the distinction
in MVFE between the base distributions is still discernible but less dramatic, see Figure 10. Interestingly, for the tanh
triplet, the Gaussian base distribution sometimes achieves lower MVFE depending on the configuration of Gθ.

In the second column of Figure 3, we plot 1/n versus the VGE. The results empirically verify the issues we highlighted
in Section 4. In terms of VGE, the generalized gamma is not uniformly better than the Gaussian base distribution for the
ReLU experiment, contrary to what the corresponding MVFE plots suggest. Only for the reduced rank experiment do
we see one-to-one correspondence between MVFE and VGE. Note that the VGE fit is particularly poor for the Gaussian
2_4 and 2_16 configurations because these variational approximations are themselves poor. Next, note the scenario in
Figure 2b is borne out by some of the tanh experiments. Take for instance tanh at H = 115 for the 2_4 configuration.
Judging by MVFE alone the generalized gamma base is worse than Gaussian base, but the corresponding VGE curves
show the opposite, see (3,3) subplot in Figures 8 and 9.
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8 Discussion

We conclude by discussing some of the limitations of the current work. On the empirical front, the reader may have
noticed that our experiments did not involve truly deep BNNs. Strictly speaking this is not a limitation of the proposed
method but rather a limitation of the scalability of normalizing flows for approximating deep BNNs. We expect the
proposed methodology to benefit from orthogonal research advances in normalizing flow architectures.

On the theoretical side, it may be of interest to flush out the magnitude of logC(p, p0, ϕ)− C in Theorem 6.1. The
general expression for C(p, p0, ϕ), although known in special cases [Lin, 2011, Corollary 5.9], has complex dependency
on K(w) and the prior. However, we do expect that the leading coefficient can be bounded with some effort. Relatedly,
it is important to recognize that Theorem 6.1 only concerns the variational approximation gap of the idealized family in
(17). Deriving an analogous result for the Gaussian base distribution would make for interesting future work.

We are optimistic that natural conditions on the model-truth-prior triplet and the variational family should allow for
general statements about MVFE asymptotic expansions. Further efforts into studying the asymptotics of the MVFE will
also advance knowledge of the relationship between λvfe and λvge. In its place, our results here show that it is all the
more important to pay attention to the variational approximation gap if we wish to have useful downstream predictions.
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A SLT assumptions

Conventional learning theory studies parametric statistical models under the assumption that they satisfy certain
regularity conditions. Unfortunately, most models employed in modern machine learning lack such regularity and
exhibit behavior that is unaccounted for by conventional learning theory. The core observation of singular learning
theory is that singularities of unidentifiable models have drastic impact on learning behavior. In Watanabe [2009]
and Watanabe [2018], Watanabe carried out a rigorous investigation into singular statistical models from the Bayesian
perspective, culminating in several cornerstone results including Theorem 2.1 and those described in Section 3.

Fundamental Conditions I and II given in Definitions 6.1 and 6.3 of Watanabe [2009], respectively, are a set of blanket
conditions that Watanabe uses throughout the development of SLT; some components of these conditions are not
actually relevant to the results we cite in this paper. Below, we simply present the parts of Fundamental Conditions I
and II that are relevant to the SLT results we care about in this paper.

1. The model has compact parameter space W ⊂ Rd defined by real analytic inequalities.

2. The parameter space W is equipped with a prior distribution with semi-analytic density, i.e. the prior density
can be expressed as ϕ(w) = ϕ0(w)ϕ1(w) with ϕ0 a positive smooth function and ϕ1 a non-negative analytic
function.

3. For all w ∈W , p(x|w) has the same support as the truth p0(x)5

4. The true distribution p0(x) is realisable by the model p(x|w). In other words, there exist a parameter w0 ∈W ,
such that p0(x) = p(x|w0).

5. The log-likelihood ratio function f(x,w) := log p0(x)
p(x|w) can be extended to a complex analytic function

WC 3 w 7→ f(·, w), taking value in the Ls(p0) with s = 2, i.e., the space of functions that are square
integrable with respect to the true measure p0.

On compactness We require the parameter space W to be compact in Assumption 1. This is not required when the
set of true parameters W0 = {w : K(w) = 0} is contained within a relatively compact neighborhood as contributions
of parameters far from W0 drops of exponentially. Even in the case where W0 is not compact, we could consider
compactification of Rd ' Rd ∪ {|w| =∞}, but we will need to ensure that f(x,w) extends to an analytic function in
the neighborhood of infinity. In practical implementation however, it is common to have compact W due to machine
implementation constraints.

On realizability Assumption 4 above required that the zero set of K(w) be non-empty. Let’s discuss how to deal
with violations of this assumption. In unrealisable cases, we can still derive many SLT results by replacing K(w) with
K(w)−K(w0) wherew0 is any parameter that achieves the minimum ofK and replacing f(x,w) in Assumption 5 with
f(x,w) = log p(x|w0)

p(x|w) . Then we can smoothly proceed with the theory in the usual manner by resolving singularities of
K(w)−K(w0) in a neighbourhood of the optimal parameter set W0 = {w : K(w)−K(w0) = 0}, if we make an
additional assumption known as the renormalisability condition [Watanabe, 2010]. Without renormalisability, we can
still proceed but with considerably more difficult technical challenges Watanabe [2010], Nagayasu and Watanbe [2022].

On analyticity and integrability conditions The result in Theorem 2.1 is obtained through a direct application
of Hironaka’s resolution of singularities, simultaneously, to K(w) =

∫
p0(x)f(x,w)dx and the prior ϕ(w). It only

requires that the zero set of K(w) is non-empty and both functions are analytic on an open neighbourhood of the zero
set. The requirements can be further relaxed to have K(w) and ϕ(w) being semi-analytic and the resolution theorem
applied to their analytic factors. The analyticity condition on f(x,w) in Assumption 5 is usually sufficient to ensure
analyticity on K(w). Application of a resolution map g(ξ) = w for K(w), together with integrability conditions for
f(x,w) (Assumption 5) results in the discovery of the connection between geometry W0 with free energy asymptotics
11 and 10 via the RLCT.

It should be noted, however, that even in cases where f(x,w) is non-analytic, the model might still be ameanable to
the same treatment if an equivalent analytic representation can be found. For instance, [Watanabe, 2009, Section 7.8]
shows how the non-analytic f(x,w) for normal mixture models can be analysed in SLT.

5In the main text we work with the “supervised" setting and model the joint distribution p(x, y|w) = p(x)p(y|x,w). Here, for
easier exposition, we limit the discussion to the “unsupervised" setting p(x|w).
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B Toy example of RLCT calculation

We recall Example 27 from Watanabe [2018] to illustrate the concepts of resolution map, RLCT and multiplicity for a
simple model-truth-prior triplet. For univariate input x ∈ [0, 1] and univariate output y ∈ R, consider the model with
parameter w = (a, b) ∈ [0, 1]2 given by

p(x, y|w) =
1√
2π

exp(−1

2
(y − a tanh(bx))2). (25)

Suppose the prior is uniform, i.e., ϕ(w) = 1 and the truth is given by p0(x, y) = p(x, y|0, 0). Then we can easily see
that

K(w) = b2a2 1

2
K0(w),

where

K0(w) =

∫ 1

0

(
tanh(bx)

b

)2

dx.

The following desingularization map puts the triplet in standard form:

ξ1 =

√
K0(w)

2
a

ξ2 = b.

Next, we have ϕ(g(ξ)) = ξh where h = (0, 0) and b(ξ) = |g′(ξ)|. Since (k1, k2) = (1, 1) and (h1, h2) = (0, 0) we
have (λ1, λ2) = (1/2, 1/2). Therefore for this particular model-truth-prior triplet, the RLCT is 1/2 with multiplicity 2.

We should note that, to date, there is a rather small collection of strictly singular model-truth-prior triplets where the
RLCT and multiplicity are known.

C Rewriting the variational approximation gap

Recall the posterior distribution in the new coordinate ξ in (7). For q in (17), we have

KL(q(w) ‖ p(w|Dn))

= KL(q0(ξ) ‖ p(ξ|Dn))

= Eq0nKn(g(ξ)) + KL(q0(ξ) ‖ ϕ(g(ξ))|g′(ξ)|) + log Z̄(n).

Following the notation in Bhattacharya et al. [2020], we defined

Ψn(q0) = −Eq0nKn(g(ξ))−KL(q0(ξ) ‖ ϕ(g(ξ))|g′(ξ)|).

As long as the support of q0(ξ) is contained in the support of the posterior p(ξ|Dn), we have KL(q0(ξ) ‖ p(ξ|Dn)) ≥ 0,
leading to the lower bound

Ψn(q0) ≤ log Z̄(n).

Equality is achieved if and only if q0(ξ) = p(ξ|Dn).

D Lemmas and proofs

Lemma D.1. Suppose the model-truth-prior triplet (p, p0, ϕ) is such that Theorem 2.1 holds. Let g = gα where α is
such that Mα is an essential chart. On this essential chart, write the local RLCTs

λ̃j =
h̃j + 1

2k̃j
, j = 1, . . . , d

in descending order so that λ̃1 is the RLCT of the triplet (p, p0, ϕ), i.e., λ̃1 = λ(p, p0, ϕ). Let Q0 be as in (16). For
q0 ∈ Q0, we have

Ψ(q0) = −E1 − E2 + E3 + E4

with the individual terms E1, . . . , E4 given below in the body of the proof.
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Proof. With standard form and Main Formula 1 in Watanabe [2009], we have

nK(g(ξ)) = nξ2k̃

ϕ(g(ξ))|g′(ξ)| = b(ξ)
∣∣∣ ξh̃ ∣∣∣

with b(ξ) > 0. We therefore have

Ψ(q0) = −nEq0
[
ξ2k̃
]
− Eq0 log q0 + Eq0

[
log ξh̃

]
+ Eq0 [log b(ξ)]

= −E1 − E2 + E3 + E4

where we have named each term in the sum

E1 := nEq0
[
ξ2k̃
]
, E2 := Eq0 log q0

E3 := Eq0
[
log ξh̃

]
, E4 := Eq0 [log b(ξ)]

In the following we will make use of the following elementary facts about the univariate generalized gamma density
truncated to [0, 1]. They are stated in the same notaton as in Bhattacharya et al. [2020]. The normalizing constant of qj
is given by B(λj , kj , βj) where

B(λ, k, β) =
β−λΓ(λ)γ(λ, β)

2k
(26)

and γ(a, x) = 1
Γ(a)

∫ x
0
ta−1e−t dt is the (regularized) lower incomplete gamma function. The quantity Eqjξ

2kj =

G(λj , βj) where

G(λ, β) =
λ

β

γ(λ+ 1, β)

γ(λ, β)
. (27)

First we have

E1 = n

d∏
j=1

Eqj0ξ
2k̃j

= n

d∏
j=1

β
−

k̃j
kj

j

Γ(λj +
k̃j
kj

)γ(λj +
k̃j
kj
, βj)

Γ(λj)γ(λj , βj)
.

Next we have

E2 =

d∑
j=1

hjEqj0 log ξj − βjG(λj , βj)− logB(kj , hj , βj).

For the third term we have

E3 =

d∑
j=1

h̃jEqj0 log ξj .

In the lemma below, we improve upon the lower bound provided in Theorem 3.1 in Bhattacharya et al. [2020] where
the constant is given by

λ̃(1−
d∏

j=m+1

G(λ̃j , βj)) +

d∑
j=m+1

[βjG(λ̃j , βj) + logB(k̃j , h̃j , βj)]−
d∑
j=1

log(2k̃j)−
d∑
j=1

log(λ̃j),

where βj = 1 for j ≥ m+ 1.
Lemma D.2. Suppose the conditions of Lemma D.1 hold. We have, for n large,

sup
q0∈Q0

Ψ(q0) ≥ −λ(p, p0, ϕ) log n+ C,

where
C = sup

λ[−1],k[−1],β[−1]

C(λ[−1],k[−1],β[−1]).
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Proof. Let q0 be such that
λ1 = λ̃1, k1 = k̃1, β1 = n.

We can use Lemma D.1 to obtain the expression for Ψ(q0). Next, using the fact that nG(λ, n) ≈ λ and logB(k, h, n) ≈
−λ log n and b(ξ) is bounded below away from zero, b(ξ) > b0 := infξ b(ξ) > 0. We get that for n large,

sup
q0

Ψ(q0) ≥ −λ(p, p0, ϕ) log n+ C(λ[−1],k[−1],β[−1]),

where

C(λ[−1],k[−1],β[−1]) = λ(p, p0, ϕ)

1−
d∏
j=2

β
−

k̃j
kj

j

Γ(λj +
k̃j
kj

)γ(λj +
k̃j
kj
, βj)

Γ(λj)γ(λj , βj)


+

d∑
j=2

(
(h̃j − hj)Eqj0 log ξj + βjG(λj , βj)− logB(kj , hj , βj)

)
+ log b0. (28)

E Experiment details

We first provide details on the model-truth-prior triplets considered in Section 7. Next we describe the architecture
adopted for Gθ in the implementation of the normalizing flow. We then detail the training procedure for learning the
normalizing flow and the estimation of the evaluation measures. Finally, additional experimental results are given and
discussed.

E.1 Model-truth-prior triplets

In all triplets considered, the prior over the neural network weights is chosen to be the standard Gaussian.

In the one-layer tanh experiment, the input x ∈ R follows the uniform distribution on [−1, 1], and the response
variable y ∈ R is modeled as

p(y|x,w) =
1√
2π

exp(−1

2
(y − f(x,w))2),

where

f(x,w) =

H∑
h=1

bh tanh(ahx)

is a tanh network with H hidden units and w is the collection of neural network weights {(ah, bh)}Hh=1. We shall
consider two true distributions, one in which we know the true RLCT and multiplicity, which we call one-layer tanh
zero-mean, and the other where we do not, which we call simply one-layer tanh. For the zero-mean setting, we set

p0(y|x) = p(y|x, 0) =
1√
2π

exp(−1

2
y2).

In this case, it was shown in Aoyagi and Watanabe [2006] that

λ(p, p0, ϕ) =
H + i2 + i

4i+ 2

and m = 2 if i2 = H , and m = 1 if i2 < H where i is the maximum integer satisfying i2 ≤ H . In contrast, were this a
regular statistical model, we would have λ(p, p0, ϕ) = H . For the other truth setting, we simply take a fixed draw of
w0 from the standard Gaussian. In this case the true RLCT and multiplicity are unknown.

In the reduced rank regression experiment, the input x ∈ RM is generated from standard Gaussian and the response
variable y ∈ RN is modeled as

p(y|x,w) = (2π)−N/2 exp{−1

2
||y −BAx||2},

where {w = (A,B)|A ∈ RH×M , B ∈ RN×H}. This model is readily seen to be a special case of a neural network
with hidden units H and identity activation function. We shall set M = H + 3 and N = H . The true parameters A0

19



VI for BNNs via Resolution of Singularities A PREPRINT

and B0 are given as follows. The matrix B0 is set to be the identity matrix IN×N . The matrix A0 is set to be an identity
matrix with dimension H plus three additional columns of 1: A0 = [IH×H ; JH×3]. The rank r for B0A0 equals H .
Under this condition, N +H < M + r is trivially satisfied and we are in Case iii) of Aoyagi and Watanabe [2005] for
which the RLCT was derived in Aoyagi and Watanabe [2005] to be

λ(p, p0, ϕ) = (NH −Hr +Mr)/2,m = 1.

Note that were this a regular model, we would instead have λ(p, p0, ϕ) = (MH +NH)/2. Notably the multiplicity is
always either m = 1 or m = 2 for the reduced rank regression model.

In the feedforward ReLU experiment, the input x ∈ R13 is generated from the standard multivariate Gaussian and the
response variable y ∈ R is modeled as Gaussian N(f(x,w), 1) where f(x,w) = w2 ReLU(w1x) for w1 ∈ RH×13

and w2 ∈ R1×H . The true distribution p0(y|x) is fixed at a random draw of w1, w2 from the standard Gaussian. The
true RLCT and multiplicity are unknown for this truth-prior-triplet.

E.2 Normalizing flow

The generalized gamma base distribution q0 is initialized (and frozen) at

λ0 = (1, . . . , 1),

k0 = (1, . . . , 1),

β0 = (n, d/2, . . . , d/2).

The Gaussian base distribution is initialized (and frozen) at the standard multivariate Gaussian with mean zero and
identity covariance. Only the weights θ in the invertible architecture Gθ are updated.

Next. we detail the implementation of Gθ. With r denoting a binary mask, a so-called affine coupling layer acts as
follows for u, v ∈ Rd,

u 7→ v = (1− r)� u+ r � (u� exp(s(r � u)) + t(r � u)),

where s and t are scaling and translation networks, respectively. We implement the translation network t as a two-
hidden-layer feedforward (leaky) ReLU neural network with tanh output activation function. The scaling t is another
two-hidden-layer feedforward (leaky) ReLU neural network with identity output activation function. Note the binary
mask r must alternate from one affine coupling layer to the next, for otherwise there would be little expressive power
in the resulting network. Note that the specific architecture of Gθ has rendered the log Jacobian term, log |G′θ(·)|,
computationally tractable. Below is a printout of the network Gθ with 2 alternating coupling pairs and 4 hidden units:

(s): ModuleList(
(0): Sequential(
(0): Linear(in_features=210, out_features=4, bias=True)
(1): LeakyReLU(negative_slope=0.01)
(2): Linear(in_features=4, out_features=4, bias=True)
(3): LeakyReLU(negative_slope=0.01)
(4): Linear(in_features=4, out_features=4, bias=True)
(5): LeakyReLU(negative_slope=0.01)
(6): Linear(in_features=4, out_features=210, bias=True)
(7): Tanh()

)
(1): Sequential(
(0): Linear(in_features=210, out_features=4, bias=True)
(1): LeakyReLU(negative_slope=0.01)
(2): Linear(in_features=4, out_features=4, bias=True)
(3): LeakyReLU(negative_slope=0.01)
(4): Linear(in_features=4, out_features=4, bias=True)
(5): LeakyReLU(negative_slope=0.01)
(6): Linear(in_features=4, out_features=210, bias=True)
(7): Tanh()

)
(2): Sequential(
(0): Linear(in_features=210, out_features=4, bias=True)
(1): LeakyReLU(negative_slope=0.01)
(2): Linear(in_features=4, out_features=4, bias=True)
(3): LeakyReLU(negative_slope=0.01)
(4): Linear(in_features=4, out_features=4, bias=True)
(5): LeakyReLU(negative_slope=0.01)
(6): Linear(in_features=4, out_features=210, bias=True)
(7): Tanh()

)
(3): Sequential(
(0): Linear(in_features=210, out_features=4, bias=True)
(1): LeakyReLU(negative_slope=0.01)
(2): Linear(in_features=4, out_features=4, bias=True)
(3): LeakyReLU(negative_slope=0.01)
(4): Linear(in_features=4, out_features=4, bias=True)
(5): LeakyReLU(negative_slope=0.01)
(6): Linear(in_features=4, out_features=210, bias=True)
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(7): Tanh()
)

)
(t): ModuleList(
(0): Sequential(
(0): Linear(in_features=210, out_features=4, bias=True)
(1): LeakyReLU(negative_slope=0.01)
(2): Linear(in_features=4, out_features=4, bias=True)
(3): LeakyReLU(negative_slope=0.01)
(4): Linear(in_features=4, out_features=4, bias=True)
(5): LeakyReLU(negative_slope=0.01)
(6): Linear(in_features=4, out_features=210, bias=True)

)
(1): Sequential(
(0): Linear(in_features=210, out_features=4, bias=True)
(1): LeakyReLU(negative_slope=0.01)
(2): Linear(in_features=4, out_features=4, bias=True)
(3): LeakyReLU(negative_slope=0.01)
(4): Linear(in_features=4, out_features=4, bias=True)
(5): LeakyReLU(negative_slope=0.01)
(6): Linear(in_features=4, out_features=210, bias=True)

)
(2): Sequential(
(0): Linear(in_features=210, out_features=4, bias=True)
(1): LeakyReLU(negative_slope=0.01)
(2): Linear(in_features=4, out_features=4, bias=True)
(3): LeakyReLU(negative_slope=0.01)
(4): Linear(in_features=4, out_features=4, bias=True)
(5): LeakyReLU(negative_slope=0.01)
(6): Linear(in_features=4, out_features=210, bias=True)

)
(3): Sequential(
(0): Linear(in_features=210, out_features=4, bias=True)
(1): LeakyReLU(negative_slope=0.01)
(2): Linear(in_features=4, out_features=4, bias=True)
(3): LeakyReLU(negative_slope=0.01)
(4): Linear(in_features=4, out_features=4, bias=True)
(5): LeakyReLU(negative_slope=0.01)
(6): Linear(in_features=4, out_features=210, bias=True)

)
)

)

E.3 Training

To train the normalizing flow with a generalized gamma base distribution, we first begin by noting that the generalized
gamma distribution is simply related to the gamma distribution. Let Vj be a gamma random variable with shape λj and
rate βj , then V 1/(2kj)

j has density ξ2kjλj−1
j exp(−βjξ

2kj
j ). This is convenient because the pathwise derivative for the

gamma distribution is readily available in libraries such as PyTorch. The corresponding optimization objective is given
by

ELBO(θ) := Eξ∼q0

[
n∑
i=1

log p(yi|xi, Gθ(ξ)) + log(ϕ(Gθ(ξ))|G′θ(ξ)|)

]
− Eξ∼q0 log q0(ξ)

= Ev∼Gamma(λ0,β0)

[
n∑
i=1

log p(yi|xi, Gθ(v1/(2k))) + log(ϕ(Gθ(v
1/(2k)))|G′θ(v1/(2k))|)

]
− Eξ∼q0 log q0(ξ).

(29)

The number of epochs was set to 5000 for full-batch training using ADAM with initial learning rate of 0.01 for θ in
Gθ. We estimate the expectation in the ELBO using M = 10 samples except for the entropy component, −Eq0 log q0,
which was derived analytically, using Equations (26) and (27).

The exact same training parameters were used for the normalizing flow with Gaussian base distribution in which case
the ELBO is given by

ELBO(θ) :=Eξ∼N(0,Id)

[
n∑
i=1

log p(yi|xi, Gθ(ξ)) + log(ϕ(Gθ(ξ))|G′θ(ξ)|)

]
+H(N(0, Id)), (30)

where H(·) denotes the entropy of the distribution, i.e., H(q0) := −Eξ∼q0 log q0(ξ).

E.4 Estimating MVFE and VGE

To estimate normalized MVFE, we use the learned q̂∗ and the empirical training entropy Sn which we know in
simulations. To estimate expectations over q̂∗, 1000 samples are used. The VGE is estimated using (9) with an
independent dataset Dn′ of sample size n′ = 10000.
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To estimate coefficients λvfe and λvge, we generate 30 realizations of training data Dn for each of 10 possible sample
sizes n evenly spaced on the log scale between 3.0 and 3.7: n ∈ {1000, 1196, 1431, 1711, 2047, 2448, 2929, 3503,
4190, 5012}. This allows us to estimate the left-hand sides of (13) and (15). The coefficients themselves are estimated
by fitting least squares, against log n for the average normalized MVFE and 1/n for the average VGE. For the former,
we fit an intercept, while for the latter the intercept is forced to be zero.

E.5 Additional experimental results

In this section, we display the MVFE and VGE for all four experiments in Table 1. We first group by the individual
base distributions, which allows for greater readability as the y-axis scale is consistent within the base distribution. We
then juxtapose the “best" performing Gθ, according to MVFE, for each base distribution, which usually happens to be
the architecture Gθ with 4 alternating pairs and 16 hidden units. Similarly, we also plot the least expressive Gθ which is
the 2_4 configuration.
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Figure 4: MVFE for Gaussian base distribution.
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Figure 5: VGE for Gaussian base distribution.
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Figure 6: MVFE for generalized gamma base distribution.
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Figure 7: VGE for generalized gamma base distribution.
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Figure 8: MVFE for Gθ with the least expressive 2_4 configuration.
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Figure 9: VGE for Gθ with the least expressive 2_4 configuration.
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Figure 10: MVFE for Gθ with the best performing architecture for each base distribution, as judged by MVFE. This is
usually the 4_16 configuration, but not always.
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Figure 11: VGE for Gθ with the best performing architecture for each base distribution, as judged by MVFE. This is
usually the 4_16 configuration, but not always.
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Figure 12: MVFE for all base distributions and Gθ architectures considered. Note that the first column of Figure 3 in
the main text is a subset of the plots here.
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Figure 13: VGE for all base distributions and Gθ architectures considered. Note that the second column of Figure 3 in
the main text is a subset of the plots here.
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