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Deep Learning Is Singular, and That’s Good
Susan Wei , Daniel Murfet , Mingming Gong , Hui Li , Jesse Gell-Redman , and Thomas Quella

Abstract— In singular models, the optimal set of parameters
forms an analytic set with singularities, and a classical statistical
inference cannot be applied to such models. This is significant
for deep learning as neural networks are singular, and thus,
“dividing” by the determinant of the Hessian or employing the
Laplace approximation is not appropriate. Despite its potential
for addressing fundamental issues in deep learning, a singular
learning theory appears to have made little inroads into the
developing canon of a deep learning theory. Via a mix of theory
and experiment, we present an invitation to the singular learning
theory as a vehicle for understanding deep learning and suggest
an important future work to make the singular learning theory
directly applicable to how deep learning is performed in practice.

Index Terms— Bayesian deep learning, real log canonical
threshold (RLCT), singular learning theory, widely applicable
Bayes information criterion.

I. INTRODUCTION

IT HAS been understood for close to 20 years that neural
networks are singular statistical models [1], [2]. This

means, in particular, that the set of network weights equiv-
alent to the true model under the Kullback–Leibler (KL)
divergence forms a real analytic variety, which fails to be
an analytic manifold due to the presence of singularities.
It has been shown by Sumio Watanabe that the geometry
of these singularities controls the quantities of interest in
statistical learning theory, e.g., the generalization error. A sin-
gular learning theory [3] is the study of singular models and
requires very different tools from the study of regular statistical
models. The breadth of knowledge demanded by the singular
learning theory—Bayesian statistics, empirical processes, and
algebraic geometry—is rewarded with profound and surprising
results, which reveal that the singular models are different from
regular models in practically important ways. To illustrate the
relevance of the singular learning theory to deep learning, each
section of this article illustrates a key takeaway idea.1

The real log canonical threshold (RLCT) is the correct way
to count the effective number of parameters in a deep neural
network (DNN) (Section IV). To every (model, truth, and
prior) triplet is associated a birational invariant known as the
RLCT. The RLCT can be understood in simple cases as half
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the number of normal directions to the set of true parameters.
We will explain why this matters more than the curvature of
those directions (as measured, for example, by eigenvalues of
the Hessian) laying bare some of the confusion over “flat”
minima.

For singular models, the Bayes predictive distribution is
superior to maximum a posteriori (MAP) and maximum
likelihood estimator (MLE) (Section V). In regular statistical
models, the following hold: 1) Bayes predictive distribution;
2) MAP estimator; and 3) MLE have asymptotically equivalent
generalization error (as measured by the KL divergence). This
is not so in singular models. We illustrate, in our experiments,
that even “being Bayesian” in just the final layers improves
generalization over MAP. Our experiments further confirm that
the Laplace approximation of the predictive distribution [4],
[5] is not only theoretically inappropriate but performs poorly.

Simpler true distribution means lower RLCT (Section VI).
In singular models, the RLCT depends on the (model, truth,
and prior) triplet, whereas, in regular models, it depends only
on the (model and prior) pair. The RLCT increases as the
complexity of the true distribution relative to the supposed
model increases. We verify this experimentally with a simple
family of rectified linear units (ReLUs) and sigmoid linear
units (SiLUs) networks.

II. RELATED WORK

In a classical learning theory, generalization is explained
by measures of capacity, such as the l2 norm, Radamacher
complexity, and Vapnik–Chervonenkis (VC) dimension [6].
It has become clear, however, that these measures cannot
capture the empirical success of DNNs [7]. For instance,
over-parameterized neural networks can easily fit random
labels [7]–[9], indicating that the complexity measures, such
as Rademacher complexity, are very large. There is also a
slate of work on generalization bounds in deep learning.
Uniform convergence bounds [10]–[13] usually cannot pro-
vide non-vacuous bounds. Data-dependent bounds [14]–[16]
consider the “classifiability” of the data distribution in a gen-
eralization analysis of neural networks. Algorithm-dependent
bounds [17]–[20] consider the relation of Gaussian initializa-
tion and the training dynamics of (stochastic) gradient descent
to kernel methods [21].

In contrast to many of the aforementioned works, we are
interested in estimating the conditional distribution q(y|x).
In particular, we measure the generalization error of some
estimate q̂n(y|x) in terms of the KL divergence between q
and q̂n ; see (V.1). Section III gives a crash course on singular
learning theory. The rest of this article illustrates the key ideas
listed in Section I. As we cover much ground in this short note,
we will review other relevant work along the way, in particular,
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literature on “flatness,” the Laplace approximation in deep
learning, and so on.

III. SINGULAR LEARNING THEORY

To understand why classical measures of capacity fail to say
anything meaningful about DNNs, it is important to distinguish
between two different types of statistical models. Recall we
are interested in estimating the true (and unknown) conditional
distribution q(y|x) with a class of models {p(y|x, w) : w ∈
W }, where W ⊂ Rd is the parameter space. We say the model
is identifiable if the mapping w �→ p(y|x, w) is one-to-one.
Let q(x) be the distribution of x . The Fisher information
matrix associated with the model {p(y|x, w) : w ∈ W } is
the matrix-valued function I (w) on W whose entry I (w)i j is
defined by∫ ∫

∂

∂wi

[
log p(y|x, w)

] ∂

∂w j

[
log p(y|x, w)

]
q(y|x)q(x)dxdy

if this integral is finite. Following the conventions in [3],
we have the following bifurcation of statistical models. A sta-
tistical model p(y|x, w) is called regular if it is 1) identifiable
and 2) has positive-definite Fisher information matrix. A sta-
tistical model is called strictly singular if it is not regular.

Let ϕ(w) be a prior on the model parameters w. To every
(model, truth, and prior) triplet, we can associate the zeta
function, ζ(z) = ∫

K (w)zϕ(w) dw, z ∈ C, where K (w) is
the KL divergence between the model p(y|x, w) and the true
distribution q(y|x)

K (w) :=
∫ ∫

q(y|x) log
q(y|x)

p(y|x, w)
q(x) dx dy. (III.1)

For a (model, truth, and prior) triplet (p(y|x, w), q(y|x),
and ϕ), let −η be the maximum pole of the corresponding
zeta function. We call η the RLCT [3] of the (model, truth,
and prior) triplet. The RLCT is the central quantity of the
singular learning theory. Many existing papers in singular
learning theory attempt to calculate or estimate the RLCT for
the purpose of eventually estimating the minus log maringal
likelihood, or free energy. We will soon see that the RLCT is
interesting in its own right as it is the correct way to count
the effective number of parameters in a DNN (Section IV).
The RLCT will also show up in important equations for the
generalization error.

By [3, Th. 6.4], the RLCT is equal to d/2 in regular sta-
tistical models and bounded above by d/2 in strictly singular
models if realizability holds: let

W0 = {w ∈ W : p(y|x, w) = q(y|x)}
be the set of true parameters, and we say q(y|x) is realizable
by the model class if W0 is non-empty. The condition of
realizability is critical to standard results in singular learning
theory. Modifications to the theory are needed in the case that
q(y|x) is not realizable; see the condition called relatively
finite variance in [22].

A. Neural Networks in Singular Learning Theory

Let W ⊆ Rd be the space of weights of a neural network of
some fixed architecture, and let f (x, w) : RN × W −→ RM

be the associated function. We shall focus on the regression
task and study the model

p(y|x, w) = 1

(2π)M/2 exp

(
−1

2
�y − f (x, w)�2

)
(III.2)

but singular learning theory can also apply to classification,
for instance. It is routine to check (see Appendix A) that, for
feedforward ReLU networks, not only is the model strictly
singular but the matrix I (w) is degenerated for all nontrivial
weight vectors and the Hessian of K (w) is degenerated at
every point of W0.

B. RLCT Plays an Important Role in Model Selection

One of the most accessible results in singular learning
theory is the work related to the widely applicable Bayesian
information criterion (WBIC) [23], which we briefly review
here for completeness. Let Dn = {(xi , yi)}n

i=1 be a dataset of
input–output pairs. Let Ln(w) be the negative log likelihood

Ln(w) = − 1

n

n∑
i=1

log p(yi |xi , w) (III.3)

and p(Dn|w) = exp(−nLn(w)). The marginal likelihood
of a model {p(y|x, w) : w ∈ W } is given by p(Dn) =∫

W p(Dn|w)ϕ(w) dw and can be loosely interpreted as the
evidence for the model. Between two models, we should prefer
the one with higher model evidence. However, as the marginal
likelihood is an intractable integral over the parameter space
of the model, one needs to consider some approximation.

The well-known Bayesian information criterion (BIC)
derives from an asymptotic approximation of − log p(Dn)
using the Laplace approximation, leading to BIC =
nLn(wMLE)+ (d/2) log n. As we want the marginal likelihood
of the data for some given model to be high, one should
almost never adopt a DNN according to the BIC, because in
such models, d may be very large. However, this argument
contains a serious mathematical error: the Laplace approxi-
mation used to derive BIC only applies to regular statistical
models, and DNNs are not regular. The correct criterion for
both regular and strictly singular models was shown in [23]
to be nLn(w0) + η log n, where w0 ∈ W0, and η is the RLCT.
As DNNs are highly singular and η may be much smaller
than d/2 (Section VI), it is possible for DNNs to have high
marginal likelihood—consistent with their empirical success.

IV. VOLUME DIMENSION, EFFECTIVE DEGREES OF

FREEDOM, AND FLATNESS

A. Volume Codimension

The easiest way to understand the RLCT is as a volume
codimension [3, Th. 7.1]. Suppose that W ⊆ Rd and W0 is
nonempty; i.e., the true distribution is realizable. We consider
a special case in which the KL divergence in a neighborhood
of every point v0 ∈ W0 has an expression in local coordinates
of the form

K (w) =
d �∑

i=1

ciw
2
i (IV.1)
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where the coefficients c1, . . . , cd � > 0 may depend on v0,
and d � may be strictly less than d . If the model is regular,
then this is true with d = d �, and if it holds for d � < d ,
then we say that the pair (p(y|x, w), q(y|x)) is minimally
singular. It follows that the set W0 ⊆ W of true parameters
is a regular submanifold of codimension d � (that is, W0 is a
manifold of dimension d − d �, where W has dimension d).
Under this hypothesis, there are, near each true parameter
v0 ∈ W0, exactly d − d � directions in which v0 can be varied
without changing the model p(y|x, w) and d � directions in
which varying the parameters does change the model. In this
sense, there are d � effective parameters near v0.

This number of effective parameters can be computed by
an integral. Consider the volume of the set of almost true
parameters V (t, v0) = ∫

K (w)<t ϕ(w)dw, where the integral is
restricted to a small closed ball around v0. As long as the
prior ϕ(w) is non-zero on W0, it does not affect the relevant
features of the volume, so we may assume ϕ is constant on
the region of integration in the first d � directions and normal in
the remaining directions, so up to a constant depending only
on d �, we have

V (t, v0) ∝ td �/2

√
c1, . . . , cd �

(IV.2)

and we can extract the exponent of t in this volume in the
limit

d � = 2 lim
t→0

log{V (at, v0)/V (t, v0)}
log(a)

(IV.3)

for any a > 0, a �= 1. We refer to the right-hand side of (IV.3)
as the volume codimension at v0.

The function K (w) has the special form (IV.1) locally with
d � = d if the statistical model is regular (and realizable)
and with d � < d in some singular models, such as reduced
rank regression (Appendix B). While such a local form
does not exist for a singular model generally (in particular,
for neural networks), nonetheless, under natural conditions
[3, Th. 7.1], we have V (t, v0) = ctη + o(tη), where c is a
constant. We assume that, in a sufficiently small neighborhood
of v0, the point RLCT η at v0 [3, Definition 2.7] is less than
or equal to the RLCT at every point in the neighborhood,
so that the multiplicity m = 1; see [3, Sec. 7.6] for relevant
discussion. It follows that the limit on the right-hand side
of (IV.3) exists and is equal to η. In particular, η = d �/2 in
the minimally singular case.

Note that for strictly singular models, such as DNNs, 2η
may not be an integer. This may be disconcerting but the
connection among the RLCT, generalization error, and volume
dimension strongly suggests that 2η is, nonetheless, the only
geometrically meaningful “count” of the effective number of
parameters near v0.

B. RLCT and Likelihood Versus Temperature

Again working with the model in (III.2), consider the
expectation over the posterior at temperature T as defined

in (C.4) of the negative log likelihood (III.3)

E(T ) = E
1/T
w [nLn(w)]

= E
1/T
w

[
1

2

n∑
i=1

�yi − f (xi , w)�2

]
+ nM

2
log(2π).

Note that when n is large Ln(v0) ≈ (M/2) log(2π) for any
v0 ∈ W0, so for T ≈ 0, the posterior concentrates around
the set W0 of true parameters and E(T ) ≈ (nM/2) log(2π).
Consider the increase �E = E(T +�T )− E(T ) correspond-
ing to an increase in temperature �T . It can be shown that
�E ≈ η�T where the reader should see [23, Corollary 3]
for a precise statement. As the temperature increases, samples
taken from the tempered posterior are more distant from W0,
and the error E will increase. If η is smaller than, for a given
increase in temperature, the quantity, then E increases less:
this is one way to understand intuitively why a model with
smaller RLCT generalizes better from the dataset Dn to the
true distribution.

C. Flatness

It is folklore in the deep learning community that flatness
of minima is related to generalization [24], [25], and this
claim has been revisited in recent years [4], [5], [26], [27].
In regular models, this can be justified using the lower order
terms of the asymptotic expansion of the Bayes free energy
[28, Sec. 3.1], but the argument breaks down in strictly singu-
lar models, because, for example, the Laplace approximation
of [5] is invalid. The point can be understood via an analysis
of the version of the idea in [25]. Their measure of entropy
compares the volume of the set of parameters with tolerable
error t0 (our almost true parameters) to a standard volume

− log

[
V (t0, v0)

td/2
0

]
= d − d �

2
log(t0) + 1

2

d∑
i=1

log ci . (IV.4)

Hence, in the case d = d �, the quantity −(1/2)
∑

i log(ci) is a
measure of the entropy of the set of true parameters near w0,
a point made, for example, in [5]. However, when d � < d , this
conception of entropy is inappropriate because of the d − d �
directions in which K (w) is flat near v0, which introduce the
t0 dependence in (IV.4).

V. GENERALIZATION

The generalization puzzle [29] is one of the central mys-
teries of deep learning. A theoretical investigation into the
matter is an active area of research [30]. Many of the recent
proposals of capacity measures for neural networks are based
on the eigenspectrum of the (degenerate) Hessian [31], [32].
But, this is not appropriate for singular models and, hence, for
DNNs.

As we are interested in learning the distribution, our notion
of generalization is slightly different, being measured by
the KL divergence. Precise statements regarding the gener-
alization behavior in singular models can be made using
the singular learning theory. Let the network weights be
denoted θ rather than w for reasons that will become clear.
Recalling in the Bayesian paradigm, prediction proceeds via
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the so-called Bayes predictive distribution, p(y|x,Dn) =∫
p(y|x, θ)p(θ |Dn) dθ. More commonly encountered in deep

learning practice are the MAP and MLE point estimators.
While in a regular statistical model, the three estimators:
1) Bayes predictive distribution; 2) MAP; and 3) MLE have the
same leading term in their asymptotic generalization behavior,
and the same is not true in singular models. More precisely,
let q̂n(y|x) be some estimate of the true unknown conditional
density q(y|x) based on the dataset Dn. The generalization
error of the predictor q̂n(y|x) is

G(n) := K L(q(y|x)||q̂n(y|x))

=
∫ ∫

q(y|x) log
q(y|x)

q̂n(y|x)
q(x) dy dx . (V.1)

To account for sampling variability, we will work with
the average generalization error, En G(n), where En denotes
expectation over the dataset Dn. By [3, Ths. 1.2 and 7.2],
if q̂n is the Bayes predictive distribution, we have

En G(n) = η/n + o(1/n) (V.2)

where η is the RLCT corresponding to the triplet
(p(y|x, θ), q(y|x), and ϕ(θ)). In contrast, we should note
that [4] and [5] rely on the Laplace approximation to explain
the generalization of the Bayes predictive distribution though
both works acknowledge that the Laplace approximate is inap-
propriate. For completeness, a quick sketch of the derivation
of (V.2) is provided in Appendix D. Now, by [3, Th. 6.4], if q̂n

is the Bayes predictive distribution, we have

En G(n) = C/n + o(1/n) (V.3)

where C (different for MAP and MLE) is the maximum
of some Gaussian process. For regular models, the MAP,
MLE, and the Bayes predictive distribution have the same
leading term for En G(n), because η = C = d/2. However,
in singular models,, we have the following: 1) C  d/2; see
the discussion in [3, Sec. 1.4.4] for details, and 2) the RLCT
η � d/2, as can be seen by the many examples in which the
true RLCT is known [33], [34]. This means we should prefer
the Bayes predictive distribution for singular models.

The RLCT that has such a simple relationship to the
Bayesian generalization error is remarkable. On the other
hand, the practical implications of (V.2) are limited, because
the Bayes predictive distribution is intractable.2 While approx-
imations to the Bayesian predictive distribution, say via vari-
ational inference, might inherit a similar relationship between
the generalization and the (variational) RLCT, serious theo-
retical developments will be required to rigorously establish
this. The challenge comes from the fact that for approximate
Bayesian predictive distributions, the free energy and general-
ization error may have different learning coefficients η. This
was well documented in the case of a neural network with one
hidden layer [35].

We set out to investigate whether certain very sim-
ple approximations of the Bayes predictive distribution can
already demonstrate superiority over point estimators. Suppose

2To the best of our knowledge, experimental verification of V.2 has only
been conducted for simple reduced rank regression models; see [3, Sec. 8.3.1].

the input-target relationship is modeled as in (III.2), but we
write θ instead of w. We set q(x) = N(0, I3). For now,
consider the realizable case, q(y|x) = p(y|x, θ0), where
θ0 is drawn randomly according to the default initialization
in PyTorch when model (III.2) is instantiated. We calculate
En G(n) using multiple datasets Dn and a large testing set;
see Appendix E for more details.

As f is a hierarchical model, let us write it as fθ (·) =
h(g(·; v); w) with the dimension of w being relatively small.
Let θMAP = (vMAP, wMAP) be the MAP estimate for θ using
batch gradient descent. The idea of our simple approximate
Bayesian scheme is to freeze the network weights at the MAP
estimate for early layers and perform approximate Bayesian
inference for the final layers.3 For example, freeze the para-
meters of g at vMAP and perform Markov Chain Monte Carlo
(MCMC) over w. Throughout the experiments, g : R

3 → R
3 is

a feedforward ReLU block with each hidden layer having five
hidden units, and h : R3 → R3 is either B Ax or B ReLU(Ax),
where A ∈ R3×r and B ∈ Rr×3. We set r = 3. We shall
consider one or five hidden layers for g.

To approximate the Bayes predictive distribution, we per-
form either the Laplace approximation or the No-U-Turn Sam-
pler (NUTS) variant of Hamiltonian Monte Carlo (HMC) [37]
in the last two layers, i.e., performing inference over A, B in
h(g(·; vMAP); A, B). Note that MCMC is operating in a space
of 18 dimensions in this case, which is small enough for us
to expect MCMC to perform well. We also implemented the
Laplace approximation and NUTS in the last layer only, i.e.,
performing inference over B in h2(h1(g(·; vMAP); AMAP); B).
Further implementation details of these approximate Bayesian
schemes are found in Appendix E.

From the outset, we expect the Laplace approximation over
w = (A, B) to be invalid, because the model is singular.
We do, however, expect the last-layer-only Laplace approx-
imation over B to be sound. Next, we expect the MCMC
approximation in either the last layer or last two layers to
be superior to the Laplace approximations and to the MAP.
We further expect the last-two-layers MCMC to have better
generalization than the last-layer-only MCMC, because the
former is closer to the Bayes predictive distribution. In sum-
mary, we anticipate the following performance order for these
five approximate Bayesian schemes (from worst to best): last-
two-layers Laplace, last-layer-only Laplace, MAP, last-layer-
only MCMC, and last-two-layers MCMC.

Fig. 1 displays the average generalization error En G(n) for
various approximations of the Bayes predictive distribution.
The estimation of En G(n) is discussed in Appendix E, and
the error bars are due to approximating En over 30 draws of
training sets of size n. The results of the Laplace approxima-
tions are reported in the Appendix and not displayed in Fig. 1,
because they are higher than other approximation schemes
by at least an order of magnitude. Each subplot in Fig. 1
shows a different combination of hidden layers in g (one or

3This is similar in spirit to [36] who claim that even “being Bayesian a little
bit” fixes overconfidence. They approach this via the Laplace approximation
for the final layer of an ReLU network. It is also worth noting that [36] does
not attempt to formalize what it means to “fix overconfidence”; the precise
statement should be in terms of G(n).
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Fig. 1. Realizable and full-batch gradient descent for MAP. Average
generalization errors En G(n) are displayed for various approximations of
the Bayes predictive distribution. The results of the Laplace approximations
are reported in the Appendix and not displayed here, because they are higher
than other approximation schemes by at least an order of magnitude. Each
subplot shows a different combination of hidden layers in g (one or five) and
activation function in h (ReLU or identity). Note that the y-axis is not shared
between the subfigures.

five) and activation function in h (ReLU or identity). Note
that the y-axis is not shared. The results are in line with our
stated expectations mentioned earlier, except for the surprise
that the last-layer-only MCMC approximation is often superior
to the last-two-layers MCMC approximation. This may arise
from the fact that the MCMC finds the singular setting in
the last-two-layers more challenging. It is also worth noting
that the theory says the full Bayesian predictive distribution is
superior to MAP and MLE for singular models. Thus, when
we perform Bayesian inference in the last layers only, we are
not calculating the full Bayesian predictive distribution. This
is, perhaps, why we see a less pronounced difference between
MAP and the last layer Bayesian schemes for the larger neural
network architecture, i.e., when there are five hidden layers
in g.

Table I is a companion to Fig. 1 and tabulates, for each
approximation scheme, the slope of 1/n versus En G(n),
also known as the learning coefficient. R2 corresponding
to the linear fit is also provided. In Appendix E, we also
show the corresponding results when the following hold:
1) the data-generating mechanism and the assumed model
do not satisfy the condition of realizability, and/or 2) the
MAP estimate is obtained via mini-batch stochastic gradient
descent (SGD) instead of full-batch gradient descent.
Specifically, these additional results can be found in
Figs. 3–5 in Appendix E, and their companions
Tables III–V. Readers will notice that we have not displayed
the generalization error for the last-layer(s) Laplace methods
in Figs. 1 and 3–5. This is because the generalization
error for last-layer(s) Laplace is much higher than last-
layer(s) MCMC and MAP. The generalization error plots for
last-layer(s) Laplace can be found in Figs. 6–9 in Appendix E.
The conclusion is not sensitive to the realizability condition.
However, the batch size for MAP training does appear to have

TABLE I

COMPANION TO FIG. 1. THE LEARNING COEFFICIENT IS THE SLOPE OF
THE LINEAR FIT 1/n VERSUS En G(n) (NO INTERCEPT SINCE REALIZ-

ABLE). THE R2 VALUE GIVES A SENSE OF THE GOODNESS-OF-FIT.
(a) ONE HIDDEN LAYER(S) IN g, IDENTITY ACTIVATION IN h .

(b) FIVE HIDDEN LAYER(S) IN g, IDENTITY ACTIVATION IN
h . (c) ONE HIDDEN LAYER(S) IN g, ReLU ACTIVATION

IN h . (d) FIVE HIDDEN LAYER(S) IN g, ReLU
ACTIVATION IN h

some effect on the results. Contrasting Figs. 1 and 3, we can
see a more pronounced different between last layer(s) Bayesian
inference and MAP when MAP is trained via mini-batch SGD.

VI. SIMPLE FUNCTIONS AND COMPLEX SINGULARITIES

In singular models, the RLCT may vary with the true
distribution (in contrast to regular models), and in this section,
we examine this phenomenon in a simple example. As the
true distribution becomes more complicated relative to the
supposed model, the singularities of the analytic variety of
true parameters should become simpler, and hence, the RLCT
should increase [3, Sec. 7.6]. Our experiments are inspired
by [3, Sec. 7.2], where tanh(x) networks are considered, and
the true distribution (associated with the zero network) is held
fixed while the number of hidden nodes is increased.

Consider the model p(y|x, w) in (III.2), where f (x, w) =
c +∑H

i=1 qi ReLU(�wi , x�+ bi) is a two-layer ReLU network
with weight vector w = ({wi}H

i=1, {bi}H
i=1, {qi}H

i=1, c) ∈ R4H+1

and wi ∈ R2, bi ∈ R, and qi ∈ R for 1 ≤ i ≤ H .
Let W ⊂ R

4H+1 be some compact neighborhood of the
origin. Given an integer 3 ≤ m ≤ H , we define a network
sm ∈ W and qm(y|x) := p(y|x, sm) as follows. Let g ∈ SO(2)
stand for rotation by 2π/m, and set w1 = √

g (1, 0)T . The
components of sm are the vectors wi = gi−1w1 for 1 ≤ i ≤ m
and wi = 0 for i > m, bi = −(1/3) and qi = 1 for 1 ≤ i ≤ m
and bi = qi = 0 for i > m, and, finally, c = 0. The
factor of (1/3) ensures that the relevant parts of the decision
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Fig. 2. Function f (x, sm) is plotted for various values of m. As m increases
in f (x, sm), we obtain increasingly complicated true distributions qm(x, y)
on [−1, 1]2 × R.

TABLE II

RLCT ESTIMATES FOR ReLU AND SiLU NETWORKS. WE OBSERVE THE

RLCT INCREASING AS m INCREASES; I.E., THE TRUE DISTRIBUTION
BECOMES MORE “COMPLICATED” RELATIVE TO THE

SUPPOSED MODEL

boundaries lie within X = [−1, 1]2. We let q(x) be the
uniform distribution on X and define qm(x, y) = qm(y|x)q(x).
The functions f (x, sm) are graphed in Fig. 2. It is intuitively
clear that the complexity of these true distributions increases
with m.

We let ϕ be a normal distribution N(0, 502) and estimate
the RLCTs of the triples (p, qm , and ϕ). We conducted the
experiments with H = 5 and n = 1000. For each m ∈
{3, 4, 5}, Table II shows the estimated RLCT. We applied
Algorithm 1 with five values of β’s and |T | = 3 to estimate the
RLCT. We discuss the provenance of Algorithm 1, particularly
that it is a direct consequence of [23, Th. 4] and a simple
improvement over Watanabe’s RLCT estimation procedure
in [23, Sec. 6.2]. As expected, the RLCT increases with m
verifying that in this case, the simpler true distributions give
rise to more complex singularities.

Note that the dimension of W is d = 21, and so if the
model was regular, the RLCT would be 10.75. It can be shown
that when m = H , the set of true parameters W0 ⊆ W is
a regular submanifold of dimension m. If such a model was
minimally singular, its RLCT would be (1/2)((4m+1)−m) =
(1/2)(3m +1). In the case m = 5, we observe an RLCT more
than an order of magnitude less than the value of 8 predicted

Fig. 3. Realizable and mini-batch gradient descent for MAP training.

TABLE III

COMPANION TO FIG. 3. (a) ONE HIDDEN LAYER(S) IN g, IDENTITY ACTI-
VATION IN h . (b) FIVE HIDDEN LAYER(S) IN g, IDENTITY ACTIVATION

IN h . (c) ONE HIDDEN LAYER(S) IN g, ReLU ACTIVATION IN h . (d)
FIVE HIDDEN LAYER(S) IN g, ReLU ACTIVATION IN h

by this formula. So, the function K does not behave like a
quadratic form near W0.

Strictly speaking, it is incorrect to speak of the RLCT of an
ReLU network, because the function K (w) is not necessarily
analytic (Example 1). However, we observe empirically that
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Fig. 4. Nonrealizable and full-batch gradient descent for MAP training.

TABLE IV

COMPANION TO FIG. 4. (a) ONE HIDDEN LAYER(S) IN g, IDENTITY ACTI-
VATION IN h . (b) FIVE HIDDEN LAYER(S) IN g, IDENTITY ACTIVATION

IN h . (c) ONE HIDDEN LAYER(S) IN g, ReLU ACTIVATION IN h .
(d) FIVE HIDDEN LAYER(S) IN g, ReLU ACTIVATION IN h

the predicted linear relationship between Eβ
w[nLn(w)] and 1/β

holds in our small ReLU networks (see the R2 values in
Table II), and that the RLCT estimates are close to those for
the two-layer SiLU network [38], which is analytic (the SiLU
or sigmoid weighted linear unit is σ(x) = x(1 + e−τ x)−1,
which approaches the ReLU as τ → ∞; we use τ = 100.0 in

Fig. 5. Nonrealizable and mini-batch gradient descent for MAP training.
Missing points on the MAP learning curve are due to estimated probabilities
too close to 0.

TABLE V

COMPANION TO FIG. 5. THE LEARNING COEFFICIENT IS THE SLOPE

OF THE LINEAR FIT 1/n VERSUS En G(n) (WITH INTERCEPT SINCE
NONREALIZABLE). (a) ONE HIDDEN LAYER(S) IN g, IDENTITY

ACTIVATION IN h . (b) FIVE HIDDEN LAYER(S) IN g, IDENTITY

ACTIVATION IN h . (c) ONE HIDDEN LAYER(S) IN g, ReLU
ACTIVATION IN h . (d) FIVE HIDDEN LAYER(S) IN g,

ReLU ACTIVATION IN h

our experiments). The competitive performance of SiLU on
standard benchmarks [39] shows that the non-analyticity of
ReLU is probably not fundamental.
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Fig. 6. Realizable and full-batch gradient descent for MAP. Average gener-
alization errors of Laplace approximations of the predictive distribution. The
last-two-layers Laplace approximation results in numerical instabilities due to
degenerate Hessian. Any missing points are due to estimated probabilities too
close to 0.

VII. CONCLUSION

DNNs are singular models, and that’s good: the presence
of singularities is necessary for neural networks with large

Fig. 7. Realizable and mini-batch gradient descent for MAP training. Details
are the same as for Fig. 6.

numbers of parameters to have low generalization error.
Singular learning theory clarifies how classical tools such
as the Laplace approximation are not just inappropriate in
deep learning on narrow technical grounds: the failure of this
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Fig. 8. Nonrealizable and full-batch gradient descent for MAP training.
Details are the same as for Fig. 6.

Fig. 9. Nonrealizable and mini-batch gradient descent for MAP training.
Details are the same as for Fig. 6.
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approximation and the existence of interesting phenomena
such as the generalization puzzle have a common cause,
namely, the existence of degenerate critical points of the KL
function K (w). The singular learning theory is a promising
foundation for a mathematical theory of deep learning. How-
ever, much remains to be done. The important open problems
include the following.

A. SGD Versus the Posterior

A number of works [40]–[42] suggest that the mini-batch
SGD may be governed by SDEs that have the posterior
distribution as its stationary distribution, and this may go
toward understanding why SGD works so well for DNNs.

B. RLCT Estimation for Large Networks

Theoretical RLCTs have been cataloged for small neural
networks, albeit at significant effort4 [33], [34]. We believe
that the RLCT estimation in these small networks should be
standard benchmarks for any method that purports to approxi-
mate the Bayesian posterior of a neural network. No theoretical
RLCTs or estimation procedure are known for modern DNNs.
Although the MCMC provides the gold standard, it does not
scale to large networks. The intractability of RLCT estimation
for DNNs is not necessarily an obstacle to reaping the insights
offered by the singular learning theory. For instance, used
in the context of model selection, the exact value of the
RLCT is not as important as model selection consistency.
We also demonstrated the utility of singular learning results,
such as (V.2) and (V.3), which can be exploited even without
knowledge of the exact value of the RLCT.

C. Real-World Distributions Are Unrealizable

The existence of power laws in neural language model
training [43], [44] is one of the most remarkable experimental
results in deep learning. These power laws may be a sign of
interesting new phenomena in singular learning theory when
the true distribution is unrealizable.

APPENDIX A
NEURAL NETWORKS ARE STRICTLY SINGULAR

Many-layered neural networks are strictly singular
[3, Sec. 7.2]. The degeneracy of the Hessian in deep learning
has certainly been acknowledged in [45], which recognizes
that the eigenspectrum is concentrated around zero, and
in [46], which deliberately studies the Fisher information
matrix of a single-hidden-layer, rather than multilayer, neural
network.

We first explain how to think about a neural network in the
context of singular learning theory. A feedforward network of
depth c parametrizes a function f : RN −→ RM of the form

f = Ac ◦ σc−1 ◦ Ac−1 ◦ · · · ◦ σ1 ◦ A1

4Hironaka’s resolution of singularities guarantees existence. However, it is
difficult to do the required blowup transformations in high dimensions to
obtain the standard form.

where the values of Al : Rdl−1 −→ Rdl are affine functions, and
σl : Rdl −→ Rdl is coordinate-wise some fixed nonlinearity σ :
R −→ R. Let W be a compact subspace of Rd containing the
origin, where Rd is the space of sequences of affine functions
(Al)

c
l=1 with coordinates denoted as w1, . . . , wd , so that f

may be viewed as a function f : RN × W −→ RM . We define
p(y|x, w) as in (III.2). We assume that the true distribution is
realizable, q(y|x) = p(y|x, w0), and that a distribution q(x)
on RN is fixed with respect to which p(x, y) = p(y|x)q(x)
and q(x, y) = q(y|x)q(x). Given some prior ϕ(w) on W ,
we may apply the singular learning theory to the triplet
(p, q , and ϕ).

By straightforward calculations, we obtain

K (w) = 1

2

∫
� f (x, w) − f (x, w0)�2q(x)dx (A.1)

∂2

∂wi∂w j
K (w) =

∫ 〈
∂

∂wi
f (x, w),

∂

∂w j
f (x, w)

〉
q(x)dx

+
∫ 〈

f (x, w) − f (x, w0),

∂2

∂wi∂w j
f (x, w)

〉
q(x)dx (A.2)

I (w)i j = 1

2(M−3)/2π(M−2)/2

×
∫ 〈

∂

∂wi
f (x, w),

∂

∂w j
f (x, w)

〉
q(x)dx

(A.3)

where �−,−� is the dot product. We assume q(x) is such that
these integrals exist.

It will be convenient in the following to introduce another
set of coordinates for W . Let wl

jk denote the weight from
the kth neuron in the (l − 1)th layer to the j th neuron in
the lth layer, and let bl

j denote the bias of the j th neuron
in the lth layer. Here, 1 ≤ l ≤ c, and the input is layer
zero. Let ul

j and al
j denote the value of the j th neuron in

the lth layer before and after activation, respectively. Let ul

and al denote the vectors with values ul
j and al

j , respectively.
Let dl denote the number of neurons in the lth layer. Then

ul
j =

dl−1∑
k=1

wl
jkal−1

k + bl
j , 1 ≤ l ≤ c, 1 ≤ j ≤ dl

al
j = σ

(
ul

j

)
1 ≤ l < c, 1 ≤ j ≤ dl

with the convention that a0 = x is the input and uc = y is the
output.

In the case where σ = ReLU, the partial derivatives
(∂/∂w j) f do not exist on all of RN . However, given w ∈ W ,
we let D(w) denote the complement in RN of the union over
all hidden nodes of the associated decision boundary, that is,

R
N \ D(w) =

⋃
1≤l<c

⋃
1≤ j≤dl

{
x ∈ R

N : ul
j(x) = 0

}
.

The partial derivative (∂/∂w j) f exists on the open subset
{(x, w) : x ∈ D(w)} of RN × W .

Lemma 1: Suppose σ = ReLU, and there are c > 1 layers.
For any hidden neuron 1 ≤ j ≤ dl in layer l with 1 ≤ l < c,
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there is a differential equation{
dl−1∑
k=1

wl
jk

∂

∂wl
jk

+ bl
j

∂

∂bl
j

−
dl+1∑
i=1

wl+1
i j

∂

∂wl+1
i j

}
f = 0

which holds on D(w) for any fixed w ∈ W .
Proof: Without loss of generality, assume M = 1,

to simplify the notation. Let ei ∈ Rdl+1 denote a unit vector,
and let H (x) = (d/dx) ReLU(x). Writing (∂ f/(∂ul+1)) for a
gradient vector

∂ f

∂wl+1
i j

=
〈

∂ f

∂ul+1
,

∂ul+1

∂wl+1
i j

〉
=

〈
∂ f

∂ul+1
, al

j ei

〉

= ∂ f

∂ul+1
i

ul
j H

(
ul

j

)
∂ f

∂wl
jk

=
〈

∂ f

∂ul+1
,
∂ul+1

∂wl
jk

〉
=

〈
∂ f

∂ul+1
,

dl+1∑
i=1

wl+1
i j al−1

k H
(
ul

j

)
ei

〉

=
dl+1∑
i=1

∂ f

∂ul+1
i

wl+1
i j al−1

k H
(
ul

j

)
∂ f

∂bl
j

=
〈

∂ f

∂ul+1
,
∂ul+1

∂bl
j

〉
=

〈
∂ f

∂ul+1
,

dl+1∑
i=1

wl+1
i j H

(
ul

j

)
ei

〉

=
dl+1∑
i=1

∂ f

∂ul+1
i

wl+1
i j H

(
ul

j

)
.

The claim immediately follows.
Lemma 2: Suppose σ = ReLU, c > 1, and that w ∈ W has

at least one weight or bias at a hidden node nonzero. Then, the
matrix I (w) is degenerate, and if w ∈ W0, then the Hessian
of K at w is also degenerated.

Proof: Let w ∈ W be given, and choose a hidden node
where at least one of the incident weights (or bias) is nonzero.
Then, Lemma 1 gives a nontrivial linear dependence relation∑

i ηi (∂/∂wi ) f = 0 as the functions on D(w). The rows of
I (w) satisfy the same linear dependence relation. At a true
parameter, the second summand in (A.2) vanishes, so by the
same argument, the Hessian is degenerated.

Remark 1: Lemma 2 implies that every true parameter for a
nontrivial ReLU network is a degenerated critical point of K .
Hence, in the study of nontrivial ReLU networks, it is never
appropriate to divide by the determinant of the Hessian of K
at a true parameter, and in particular, Laplace or saddle point
approximations at a true parameter are invalid.

The well-known positive scale invariance of ReLU net-
works [47] is responsible for the linear dependence of
Lemma 1, in the precise sense that the given differential oper-
ator is the infinitesimal generator [48, Sec. IV.3] of the scaling
symmetry. However, this is only one source of degeneracy or
singularity in ReLU networks. The degeneracy, as measured
by the RLCT, is much lower than one would expect on the
basis of this symmetry alone (see Section VI).

Example 1: In general, the KL function K (w) for ReLU
networks is not analytic. For the minimal counterexample, let
q(x) be uniform on [−N, N] and zero outside, and consider

K (b) =
∫

q(x)(ReLU(x − b) − ReLU(x))2 dx .

It is easy to check that up to a scalar factor

K (b) =

⎧⎪⎨
⎪⎩

−2

3
b3 + b2 N, 0 ≤ b ≤ N

−1

3
b3 + b2 N, −N ≤ b ≤ 0

so that K is C2, but not C3 let alone analytic.

APPENDIX B
REDUCED RANK REGRESSION

For reduced rank regression, the model is

p(y|x, w) = 1(
2πσ 2

)N/2 exp

(
− 1

2σ 2
|y−B Ax |2

)

where x ∈ RM , y ∈ RN , A an M × H matrix, and
B an H × N matrix; the parameter w denotes the entries of
A and B; i.e., w = (A, B), and σ > 0 is the standard deviation
of the observation noise.

If the true distribution is realizable, then there is w0 =
(A0, B0), such that q(y|x) = p(y|x, w0). Without loss of
generality, assume that q(x) is the uniform density. In this
case, the KL divergence from p(y|x, w) to q(y|x) is

K (w) =
∫

q(y|x) log
q(y|x)

p(y|x, w)
dxdy

= �B A − B0 A0�2(1 + E(w))

where the error E is smooth, and E(w) = O(�B A − B0 A0�2)
in any region where �B A−B0 A0� < C , so K (w) is equivalent
to �B A − B0 A0�2. We write K (w) = �B A − B0 A0�2 for
simplicity in the following.

Now assume that B0 A0 is symmetric and that B0 is square;
i.e. N = H . Then, the zero locus of K (w) is explicitly given
as follows:

W0 = {
(A, B) : det B �= 0 and A = B−1 B0 A0

}
.

It follows that W0 is globally a graph over GL(H ; R). Indeed,
the set (B−1 B0 A0, B) with B ∈ GL(H ; R) is exactly W0.
Thus, W0 is a smooth H 2-dimensional submanifold of R

H 2 ×
RH×M . To prove that W0 is minimally singular in the sense
of Section IV, it suffices to show that rank(D2

A,B K ) ≥ H M ,
where D2

A,B K denotes the Hessian, but as it is no more difficult
to do so, we find explicit local coordinates (u, v) near an
arbitrary point (A, B) ∈ W0 for which {v = 0} = W0 and
K (u, v) = a(u, v)|u|2 in this neighborhood, where a is a C∞
function with a ≥ c > 0 for some c. Write

A(v) = (
B + v

)−1
B0 A0.

Then, u, v �→ (A(v) + u, B + v) gives local coordinates on
RH 2 × RH×M near (A, B), and

K (u, v) =
∣∣∣(B + v

)((
B + v

)−1
B0 A0 + u

)
− B0 A0

∣∣∣
= ∣∣B0 A0 + (

B + v
)
u − B0 A0

∣∣2

= ∣∣(B + v
)
u
∣∣2

so for v sufficiently small (and hence B +v invertible), we can
take a(u, v) = |(B + v)u|2/|u|2.
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APPENDIX C
RLCT ESTIMATION

In this section, we detail the estimation procedure for the
RLCT used in Section VI. Let Ln(w) be the negative log
likelihood as in (III.3). Define the data likelihood at inverse
temperature β > 0 to be pβ(Dn|w) = �n

i=1 p(yi |xi , w)β ,
which can also be written as

pβ(Dn|w) = exp(−βnLn(w)). (C.1)

The posterior distribution, at inverse temperature β, is defined
as

pβ(w|Dn) = �n
i=1 p(yi |xi , w)βϕ(w)∫

W �n
i=1 p(yi |xi, w)βϕ(w)

= pβ(Dn|w)ϕ(w)

pβ(Dn)

(C.2)

where ϕ is the prior distribution on the network weights w,
and

pβ(Dn) =
∫

W
pβ(Dn|w)ϕ(w) dw (C.3)

is the marginal likelihood of the data at inverse temperature
β. Finally, denote the expectation of a random variable R(w)
with respect to the tempered posterior pβ(w|Dn) as

E
β
w[R(w)] =

∫
W

R(w)pβ(w|Dn) dw. (C.4)

In the main text, we drop the superscript in the quanti-
ties (C.1)–(C.4) when β = 1, e.g., p(Dn) rather than p1(Dn).

Assuming that the conditions of [23, Th. 4] hold, we have

E
β
w[nLn(w)] = nLn(w0) + η

β
+ Un

√
η

2β
+ Op(1) (C.5)

where β0 is a positive constant, and Un is a sequence of
random variables satisfying EnUn = 0. In Algorithm 1,
we describe an estimation procedure for the RLCT based
on the asymptotic result in (C.5). We should note that
Algorithm 1 is a simple improvement over Watanabe’s RLCT
estimation in [23, Sec. 6.2]. In particular, instead of estimating
the RLCT based on two values of β, we use more β’s to
improve the estimation. When the set of β’s in Algorithm 1
contains simply two elements, Algorithm 1 completely reduces
to Watanabe’s RLCT estimation. Empirical verification of this
algorithm can be found in [23, Table 3] when the RLCT
estimation is seen to recover the true RLCT in a small reduced
rank regression problem.

For the estimates in Table II the a posteriori distribution was
approximated using the NUTS variant of HMC [37], where
the first 1000 steps were omitted, and 20 000 samples were
collected. Each η̂(Dn) estimate in Algorithm 1 was performed
by linear regression on the pairs {(1/βi , Eβi

w [nLn(w)])}5
i=1,

where the five inverse temperatures βi are centered on the
inverse temperature 1/ log(20 000).

APPENDIX D
CONNECTION BETWEEN RLCT AND GENERALIZATION

For completeness, we sketch the derivation of (V.2), which
gives the asymptotic expansion of the average generalization

Algorithm 1 RLCT via [23, Th. 4]
Input: range of β’s, set of training sets T each of size n,
approximate samples {w1, . . . , wR} from pβ(w|Dn) for each
training set Dn and each β
for training set Dn ∈ T do

for β in range of β’s do
Approximate E

β
w[nLn(w)] with 1

R

∑R
i=1 nLn(wr ) where

w1, . . . , wR are approximate samples from pβ(w|Dn)
end for
Perform generalised least squares to fit η in (C.5), call
result η̂(Dn)

end for
Output: 1

|T |
∑

Dn∈T η̂(Dn)

error En G(n) of the Bayes prediction distribution in singular
models. The exposition is an amalgamation of various works
published by Sumio Watanabe, but is mostly based on the
textbook [3].

To understand the connection between the RLCT and G(n),
we first define the so-called Bayes free energy as

F(n) = − log p(Dn)

whose expectation admits the following asymptotic
expansion [3]:

En F(n) = EnnSn + η log n + o(log n)

where Sn = −(1/n)
∑n

i=1 log q(yi |xi) is the entropy. The
expected Bayesian generalization error is related to the Bayes
free energy as follows:

En G(n) = E F(n + 1) − E F(n).

Then, for the average generalization error, we have
Equation (V.2). As models with more complex singularities
have smaller RLCTs, this would suggest that the more singular
the model is, the better its generalization (assuming one uses
the Bayesian predictive distribution for prediction). In this
connection, it is interesting to note that simpler (relative to
the model) true distributions lead to more singular models
(Section VI).

APPENDIX E
DETAILS FOR GENERALIZATION ERROR EXPERIMENTS

A. Simulated Data

The distribution of x ∈ R3 is set to q(x) = N(0, I3). In the
realizable case, y ∈ R3 is drawn according to q(y|x) =
p(y|x, θ0). In the nonrealizable setting, we set q(y|x) ∝
exp{−||y − hw0(x)||2/2}, where w0 = (A0, B0) is drawn
according to the PyTorch model initialization of h.

B. MAP Training

The MAP estimator is found via gradient descent using the
mean-squared-error loss with either the full dataset or mini-
batch set to 32. Training was set to 5000 epochs. No form of
early stopping was employed.
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C. Calculating the Generalization Error

Using a held-out-test set Tn� = {(x �
i , y �

i)}n�
i=1, we calculate

the average generalization error as

1

n�

n�∑
i=1

log q
(
y �

i

∣∣x �
i

) − En
1

n�

n�∑
i=1

log q̂n
(
y �

i

∣∣x �
i

)
. (E.1)

Assume that the held-out test set is large enough, so that the
difference between En G(n) and (E.1) is negligible. We will
refer to them interchangeably as the average generalization
error. In our experiments, we use n� = 10 000 and 30 draws
of the dataset Dn to estimate En .

D. Last Layer(s) Inference

Without loss of generality, we discuss performing inference
in the w parameters of h while freezing the parameters of g
at the MAP estimate. The steps easily extend to performing
inference over the final layer only of f = h ◦ g. Let x̃i =
gvMAP(xi). Define a new transformed dataset D̃n = {(x̃i, yi )}n

i=1.
We take the prior on w to be standard Gaussian. Define the
posterior over w given D̃n as

p
(
w

∣∣D̃n
) ∝ p

(
D̃n

∣∣w)
ϕ(w)

= �n
i=1 exp

{−||yi − hw(x̃i)||2/2
}
ϕ(w). (E.2)

Define the following approximation to the Bayesian predictive
distribution:

p̃(y|x,Dn) =
∫

p(y|x, (vMAP, w))p
(
w|D̃n

)
dw.

Let w1, . . . , wR be some approximate samples from p(w|D̃n).
Then, we approximate p̃(y|x,Dn) with

1

R

R∑
r=1

p(y|x, (vMAP, wr ))

where R is a large number, set to 1000 in our experiments.
We consider the Laplace approximation and the NUTS variant
of HMC for drawing samples from p(w|D̃n).

1) Laplace in the Last Layer(s): Recall θMAP =
(vMAP, wMAP) is the MAP estimate for fθ trained with
the data Dn . With the Laplace approximation, we draw
w1, . . . , wR from the Gaussian

N(wMAP,)

where  = (−∇2 log p(w|D̃n)|wMAP)
−1 is the inverse

Hessian5 of the negative log posterior evaluated at the
MAP estimate of the mode.

2) MCMC in the Last Layer(s): We used the NUTS variant
of HMC to draw samples from (E.2) with the first
1000 samples discarded. Our implementation used the
pyro package in PyTorch.

E. Additional Figures and Tables for Section V

Due to space, Figs. 3–9 will appear on preceding pages
before this section.

5Following [36], the code for the exact Hessian calculation is borrowed
from https://github.com/f-dangel/hbp
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