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Abstract
Algorithmic fairness seeks to identify and correct sources of bias in machine
learning algorithms. Confoundingly, ensuring fairness often comes at the cost of
accuracy. We provide formal tools in this work for reconciling this fundamental
tension in algorithm fairness. Specifically, we put to use the concept of Pareto
optimality from multiobjective optimization and seek the fairness-accuracy
Pareto front of a neural network classifier. We demonstrate that many existing
algorithmic fairness methods are performing the so-called linear scalarization
scheme, which has severe limitations in recovering Pareto optimal solutions.
We instead apply the Chebyshev scalarization scheme which is provably supe-
rior theoretically and no more computationally burdensome at recovering Pareto
optimal solutions compared to the linear scheme.
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1 INTRODUCTION

The emerging field of algorithmic fairness is concerned
with the understanding and correcting of biases in
machine learning algorithms. The scope of algorithmic
fairness research is wide, including such goals as under-
standing post-hoc the cause of bias in both the data col-
lection and the algorithm, correcting pre-hoc the data
collection and algorithm design process to mitigate unfair-
ness, defining measurements of fairness, and establishing
regulatory guidelines to govern algorithm deployment. In
this work, we highlight an underappreciated challenge to
ascertaining algorithmic fairness—while we would like an
algorithm to be both fair and accurate, these two objectives
actually conflict with each other. As an extreme example,
a completely randomized classifier is also a perfectly fair
classifier by almost all measures of fairness; we would,
however, be loathe to accept the low accuracy and arbi-
trariness of randomization. Thus, recognizing fairness and
accuracy as competing objectives, we put to use the con-
cept of Pareto optimality. Specifically, we apply tools from

multiobjective optimization to find the fairness-accuracy
Pareto front of a deep neural network classifier.

A typical multiobjective optimization problem is given
by arg min𝜃 [J1(𝜃), … , Jk(𝜃)]T , where each Ji is a loss func-
tion from some parameter space Θ to R. The task is made
difficult by the fact that it is rarely possible to find a 𝜃∗

such that all individual objectives are minimized simulta-
neously at 𝜃∗. In such circumstances, one can appeal to
Pareto optimality, a well-established notion in optimiza-
tion [1] that is used often in engineering and economics.
Pareto optimality is based on the following partial order:
for a, b ∈ R

p, we say a ≤ b if and only if every component
of a is less than or equal to the corresponding compo-
nent of b. We say 𝜃 ∈ Θ is Pareto optimal if and only if
it is nondominated, that is, there does not exist any 𝜃 ∈
Θ such that

(
J1(𝜃), … , Jk(𝜃)

) ≤ (J1(𝜃), … , Jk(𝜃)) with at
least one strict inequality. Similarly, we say 𝜃 is weakly
Pareto optimal if there exists no other 𝜃 such that Ji(𝜃) <
Ji(𝜃) for all i = 1, … , k. Note that while a Pareto optimal
point is also weakly Pareto optimal, the converse is not
true. The Pareto front is the set of all Pareto optimal
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F I G U R E 1 This diagram illustrates the difference between
weakly Pareto optimal and Pareto optimal points. All other points in
the feasible region, represented by the polygon, are dominated
points. The Pareto front itself, consisting of Pareto optimal points, is
highlighted in solid red, while the weakly Pareto optimal pints that
are not Pareto optimal are highlighted in dashed red

points. Figure 1 displays a toy Pareto front for a bi-objective
optimization problem.

Almost all techniques for finding the Pareto front are
based on scalarization, that is, turning the vector objective
into a scalar one by aggregating the individual objectives.
A successful scalarization scheme should satisfy the fol-
lowing two desiderata.

D1. The solutions to the scalarized objective are
(weakly) Pareto optimal.

D2. All Pareto optimal points are recoverable from the
scalarization scheme.

1.1 Linear scalarization

The simplest scalarization scheme is the linear scalariza-
tion Scheme [1]. Here, the vector objective is replaced with
a weighted sum, which we will call a linear scalarization
problem (LSP),

k∑
i=1

𝜆iJi, 𝜆i ∈ R>0, i = 1, … , k. (1)

Sometimes, the constraint,
∑k

i=1𝜆i = 1, is imposed, but
this is not in fact necessary, for example, if the individual

objectives are not normalized. The linear scalarization
scheme satisfies desideratum D1. Specifically, no matter
the weights 𝜆i chosen, a solution of the linear scalariza-
tion problem is weakly Pareto optimal, see Proposition 8
in [1]. However, the linear scalarization scheme critically
fails desideratum D2. In fact, it is only able to recover
points on the convex hull of the Pareto front [2]. In partic-
ular, when the Pareto front of interest is nonconvex, the
naive linear scalarization scheme may only find such 𝜃 that
strongly favors one of the objectives [1]. We illustrate this
phenomenon in Figure 2.

Despite the known drawbacks to the linear scalariza-
tion scheme for finding Pareto optimal points, almost all
train-time algorithmic fairness methods, to be reviewed
in the following section, ascribe to this approach. To see
this, we note that many popular algorithmic fairness tech-
niques minimize an objective of the form

error(𝜃) + 𝜆 × unfairness(𝜃),

where 𝜃 is the model parameters to be learned. That is,
they regularize the learning algorithm by employing the
fairness criterion as a penalty term during training [3–6].
It is easy to recognize this constrained optimization as the
linear scalarization problem in Equation (1). Thus existing
algorithmic-fairness methods can be expected to inherit
all the limitations of the linear scalarization scheme in
regards to finding Pareto optimal points.

1.2 Proposal

In this work, we use instead the Chebyshev scalariza-
tion scheme (Section 3) to find the fairness-accuracy
Pareto front of a deep neural network classifier. The
Chebyshev scheme is no more computationally burden-
some than the linear scheme while enjoying theoreti-
cally superior performance when the Pareto front is non-
convex (as it may well be). The final deliverable is a
set of neural networks spanning the fairness-accuracy
space from the high-accuracy-low-fairness corner to the
high-fairness-low-accuracy corner. This could then be
consulted by an interested party, for example, a relevant

F I G U R E 2 Two hypothetical
Pareto fronts are displayed: convex (left)
and nonconvex (right). The dashed lines
represent different weight combinations
in the LSP (1). Pareto optimality occurs
only at the tangential points of the dashed
lines. It is clearly that the LSP cannot
recover Pareto optimal points that reside
in the nonconvex region of the Pareto front
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regulatory body, to decide on a particular classifier with the
acceptable trade-off.

In recognition of the dominant role inhabited by deep
learning in predictive tasks, our examples are limited to
deep neural network classifiers. We should note, how-
ever, that nothing prevents the application of the proposed
framework to classifiers besides neural networks, as long
as the classifier is amenable to training by backpropaga-
tion. This includes models that are more familiar to the
statistical audience such as logistic regression and sup-
port vector machine. In fact, logistic regression is simply
a multilayer perception with no hidden layers and thus
a special case of the feedforward neural network we will
work with.

2 RELATED WORK

2.1 Multiobjective optimization
in machine learning and statistics

Multiobjective optimization techniques are gaining
increasing traction in machine learning [7]. Bayesian
optimization [8] and reinforcement learning [9] seem
to have particularly embraced ideas from multiobjective
optimization. The multiple-gradient descent algorithm,
a common gradient-based multiobjective optimization
technique, has been applied to kernel learning [10] and
Bayesian optimization [11]. Although multiple-gradient
descent in its original form does not scale up to the high
dimensionality of the parameter space of a neural net-
work, Sener and Koltun [12] proposed a workaround that
demonstrated good results on standard deep learning
benchmarking datasets. Another work in this vein seeks
to further articulate user preference for a specific trade-
off, by dividing a deep multitask learning problem into
different subproblems [13].

2.2 Algorithmic fairness

Let us now briefly review those works in algorithm fairness
that are concerned with correcting the bias of machine
learning algorithms. These methods are set apart accord-
ing to the stage in which intervention is taken. The first
class of methods attempts to remove bias from the input
data itself. These methods rest on the premise that once
proper preprocessing is accomplished, any classifier can be
used to produce subsequently fair predictions [14–17]. On
the other hand, postprocessing techniques directly operate
on the classifier output and are, in principle, amenable to
any classifier. The technique in Hardt et al. [3] for instance
seeks to learn a monotone transformation of the classifier

output to enforce demographic parity or equalized odds,
two standard definitions of fairness that we will review in
Section 4.

The third type of algorithmic fairness methods directly
intervenes during training. Generally speaking, these
train-time methods add the fairness criterion as a regular-
ization term to the main objective of minimizing predictive
error [5, 6, 18–23]. While early works of this type [6, 21, 24]
focused on simple machine learning algorithms such as
logistic regression, more recent work [25–28] can handle
more complex models such as neural networks.

The proposed work also intervenes at train time. It
appears to be the first in the algorithmic fairness literature
to advocate for the important role that Pareto optimal-
ity should play, considering that fairness and accuracy are
competing objectives of interest. Many methods do not
consider the trade-off curve or when they do, they do not
use proper techniques to recover Pareto optimal points in
the fairness-accuracy space.

3 THE FAIRNESS-ACCURACY
PARETO FRONT

In this section, we apply the Chebyshev scalarization
scheme to estimate the fairness-accuracy Pareto front of
a neural network binary classifier. Suppose the data con-
sist of input variables x ∈ X ⊂ R

p standardized to mean
zero and unit variance, binary response y ∈ Y indicat-
ing class membership, and binary sensitive variable a. Let
all discrete variables be dummy encoded. A feedforward
neural network is a repeated composition of affine trans-
formation followed by nonlinear transformation. Let m0 =
p and define w(l) ∈ R

ml×ml−1 and b(l) ∈ R
ml , l = 1, … ,L as

the parameters in the l-th layer of a fully connected feed-
forward neural network with L layers. Consider the affine
transformation h(l) ∶ R

ml−1 → R
ml and nonlinear transfor-

mation v(l) given by

h(l) = w(l)v(l−1) + b(l), l = 1, … ,L
v(l) = 𝜎(l)◦h(l), l = 1, … ,L,

where v(0) = id is the identity function and 𝜎(l) ∶ R
ml →

R
ml is a nonlinear transformation (more frequently called

the activation function) that acts component-wise.
The activation function in the final layer, 𝜎(L), will be

restricted to the sigmoid function, (1 + exp(−x))−1, so that
the classifier outputs scores between 0 and 1. We use the
ReLU activation function, max(0, x), in all other layers for
our experiments. Let h(l)

i be shorthand for the application
of the function h(l) to input feature xi, that is,

h(l)
i = h(l) (xi) .
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F I G U R E 3 We again consider
the two hypothetical Pareto fronts from
Figure 2. This time the dashed lines
represent different weight
combinations in the CSP (3). We can
see that the CSP, in contrast to the LSP,
can recover Pareto optimal points that
reside in the nonconvex region of the
Pareto front

Collecting all parameters
(

w(l), b(l)) , l = 1, … ,L into
the parameter vector 𝜃, let f𝜃 ∶ X → [0, 1] be a fully con-
nected feedforward neural network with parameter 𝜃 ∈ Θ
constructed as above, that is, the neural network acts as
f𝜃(x) = v(L)(x).

Let P be the joint distribution of the data (x, a, y). The
accuracy of f𝜃 will be measured by its risk,

R(𝜃) = EP (f𝜃(x), y) ,

where is a loss function. Since we are interested in binary
classification, we will limit future discussion to the binary
cross-entropy loss,  ∶ [0, 1] × {0, 1} → R given by

(p̂, y) = y log p̂ + (1 − y) log(1 − p̂).

Next, let U(𝜃) be some population measure for the
fairness of f𝜃 . We shall take the convention that higher
values of U are undesirable, yielding algorithms that are
more unfair. Since we wish for the learning algorithm f𝜃
to be both accurate and fair, we have the following vector
objective function

arg min
𝜃

[
R(𝜃)
U(𝜃)

]
. (2)

3.1 Chebyshev scalarization

As an alternative to the linear scalarization scheme in
(1), we consider the Chebyshev scalarization Scheme [29,
30] whereby the vector objective, [J1(𝜃), … , Jk(𝜃)]T , is
replaced with what we will call the Chebyshev scalariza-
tion problem (CSP),

max
i=1,… ,k

{
𝜆i|Ji(𝜃) − z∗i |} , 𝜆i ∈ R>0, i = 1, … , k (3)

where z∗i = inf𝜃 Ji(𝜃). The Chebyshev scalarization satis-
fies both desiderata D1 and D2. Namely the solutions to
(3) are at least weakly Pareto optimal and hence possibly

Pareto optimal but not necessarily. Furthermore, any
Pareto optimal solution can be obtained for some con-
figuration of 𝜆i’s, see Proposition 10 of [1]. In particular,
this means the Chebyshev scheme can find Pareto optimal
points that reside in the nonconvex area of the Pareto front
in contrast to the linear scalarization scheme. Figure 3
contains an illustration of this. However, we caution that
this does not mean that every CSP solution is Pareto opti-
mal because again the solution may be weakly Pareto
optimal.

More advanced scalarization schemes than either the
LSP or the CSP certainly exist. However, we focus on the
CSP in this article as a first step in applying MOO to
algorithmic fairness. CSP is an obvious candidate given
its clear superiority to LSP. Furthermore, there is no addi-
tional computational overhead to solve the CSP compared
to the LSP.

3.2 Estimates of the individual
components

Solving (3) first requires estimation of the population
unknowns R(𝜃) and U(𝜃). Since most learning algorithms
proceed by empirical risk minimization, we can with-
out loss of generality estimate R(𝜃) with the plug-in esti-
mator. Specifically, let Rn(𝜃) = Pn (f𝜃(x), y) where Pn =
1
n

∑n
i=1𝛿(xi,ai,yi) is the empirical measure for the training set(

x1, a1, y1
)
, … ,

(
xn, an, yn

)
∼ P. We will defer discussion

of the estimation of U(𝜃) to Section 4 in the context of
specific fairness metrics. For now, let Un(𝜃) denote some
estimator of U(𝜃) based on the dataset of sample size n. (It
does not need to be the plug-in estimator.)

3.3 Standardization

The individual estimators Rn and Un should be prop-
erly scaled so that the weights in (3) can better artic-
ulate user preferences. We will focus on discussing the
standardization of Rn and Un in the context where
f𝜃 is a neural network. As mini-batches are almost
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always employed during training of a neural network,
the risk and unfairness measures will be evaluated
on mini-batches. Let

{(
x∗

1, a
∗
1, y

∗
1
)
, … ,

(
x∗

b, a
∗
b, y

∗
b

)}
be

a mini-batch sample drawn without replacement from
Pn. Then, define the mini-batch estimate of the risk as
R∗

b(𝜃) =
1
b

∑b
i=1 (

f𝜃
(
x∗

i

)
, y∗

i

)
. Similarly, let U∗

b (𝜃) be the
mini-batch estimate of the fairness measure.

First we solve (3) for 𝜆 = 0. This will not typically be
an exact solution. For instance if f𝜃 is a neural network,
(3) can only be solved approximately, for example, opti-
mization via stochastic gradient descent. Let Rmin and Rmax
denote, respectively, the minimum and maximum value
of R∗

b observed across the mini-batches over all epochs.
We can similarly obtain Umin and Umax by solving (3) for
𝜆 = 1. Then, we standardize the accuracy and fairness
components as follows

R̃n(𝜃) = (Rn(𝜃) − Rmin) ∕ (Rmax − Rmin)

and

Ũn(𝜃) = (Un(𝜃) − Umin) ∕ (Umax − Umin) .

3.4 Pareto front candidates

Using the Chebyshev scalarization scheme leads us to
Pareto front candidates given by the set

{
𝜃𝜆n ∶ 𝜆 ∈ Λ

}
where

𝜃𝜆n = arg min
𝜃

max
{
(1 − 𝜆)R̃n(𝜃), 𝜆Ũn(𝜃)

}
. (4)

and Λ ⊂ [0, 1] is a finite set of 𝜆 values, which includes
𝜆 = 0 and 𝜆 = 1. Note that (4) follows directly from (3)
since the standardization step renders z∗i = 0 for all i. Ide-
ally, we would then solve (4) for a dense Λ. While intu-
itive, evenly distributed 𝜆’s in the interval [0, 1] should be
avoided as this often produces solutions that form clumps
in the Pareto front, that is, evenly distributed 𝜆’s in [0, 1]
do not produce evenly distributed points in the multiobjec-
tive space. The experiments in Section 5 employ approx-
imately evenly spaced values of 𝜆 on the log scale for
the set Λ. Future work might involve more sophisticated
techniques from multiobjective optimization, for example,
the Normal-Boundary-Interactive [31], which adaptively
selects 𝜆.

Finally, to get a robust estimate of the Pareto front, we
should average out, so to speak, the randomness associ-
ated with the training–testing split. If M pairs of training
and testing splits are considered, then candidates, the
output of Algorithm 1, contains in total M ∣ Λ ∣ Pareto
candidates.

Algorithm 1. Fairness-accuracy Pareto front candidates

Input: multiple splits of the data into training set
(sample size n) and testing set (sample size T) and a
finite set Λ ⊂ [0, 1] which includes 𝜆 = 0 and 𝜆 = 1.

Initialize candidates = ∅.
for each training–testing split to

Solve (4) on the training set to obtain 𝜃𝜆n for each
𝜆 ∈ Λ
Add to candidates the set

{
𝜃𝜆n ∶ 𝜆 ∈ Λ

}
end for
Output: candidates

3.5 Visualization of results

To visualize the estimated Pareto front, we plot each ele-
ment of candidates, the output of Algorithm 1, in the
fairness-accuracy space as evaluated on the test set. Specif-
ically, we calculate the out-of-sample risk of 𝜃 as

R
(
𝜃; P̂test

)
= EP̂test

(f (x; 𝜃), y) = 1
T

T∑
i=1

 (
f
(
x∗

i ; 𝜃
)
, y∗

i
)
,

where P̂test = 1
T

∑T
i=1𝛿(x∗

i ,a
∗
i ,y

∗
i ) is the empirical measure of

the test set
{(

x∗
i , a

∗
i , y

∗
i

)}T
i=1 drawn independently from the

(unknown) distribution P. Let U
(
𝜃; P̂test

)
denote the fair-

ness metric assessed on the test set. Again it need not be
a plug-in estimator. Each Pareto front candidate can then
be visualized by plotting R

(
𝜃; P̂test

)
versus U

(
𝜃; P̂test

)
for

every 𝜃 in candidates. We further cull these candidates by
keeping only the nondominated points, forming the final
Pareto front estimate.

Each point on the estimated Pareto front corresponds
to a different neural network classifier f𝜃 . A practitioner
can examine the estimated Pareto front to select the neural
network with an acceptable trade-off between fairness and
accuracy.

4 FAIRNESS MEASURES

We will be examining the fairness-accuracy Pareto front
corresponding to a variety of fairness notions. In this
section, we begin by reviewing two common notions of
fairness—demographic and conditional parity. We then
review causal approaches to fairness. Along the way,
we introduce new estimators of conditional parity and
introduce a new causal fairness measure, each of which
may be of independent interest.
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4.1 Demographic parity
and conditional parity

Many standard fairness measures involve checking the sta-
tistical independence between the prediction and the sen-
sitive attribute. The classifier f𝜃(x) is said to exhibit demo-
graphic parity with respect to the sensitive attribute
a if f𝜃(x) ⟂⟂ a, where ⟂⟂ stands for independence. Intu-
itively, demographic parity assesses whether the predicted
score depends on the sensitive variable. For example,
a classifier predicting if a convicted criminal will reof-
fend exhibits demographic parity with respect to race if
the distribution of f𝜃(x) is the same irrespective of race.
Despite its intuitiveness, the drawbacks to demographic
parity are well-documented [3, 32]. For instance, when the
base rates differ across values of the sensitive attribute,
satisfying demographic parity can come at the cost of
discrimination.

Conditional parity, a term coined in Ritov et al. [33],
is another notion of fairness that encompasses several
fairness measures. The prediction f𝜃(x) is said to exhibit
conditional parity with respect to sensitive attribute a
conditioned on u if f𝜃(x) ⟂⟂ a ∣u. Conditional parity in fact
unifies several existing fairness definitions. For instance,
the notion of equalized odds, introduced in Hardt et al.
[3], is recovered by setting u to y, the true target class
membership itself.

That the notions of demographic and conditional par-
ity can strongly differ and may lead to seemingly paradox-
ical results was strikingly illustrated in Bickel et al. [34]
for graduate admissions at UC Berkeley. Consider a clas-
sifier predicting whether an applicant should be admitted
to graduate school. One may desire admission decisions to
be independent of gender (demographic parity) or inde-
pendent of gender conditional on a particular university
department (conditional parity). Depending on which fair-
ness measure is employed, radically different conclusions
may be reached.

We propose to assess demographic and conditional par-
ity using the mean–variance statistic proposed in Cui et al.
[35]. The development of these estimators is not central to
the proposed work but may be of separate interest so we
defer its presentation to Appendix B.2.

4.2 Causal fairness in the overlap
population

Taking the causal approach to defining fairness means
replacing the question “Is the learning prediction (con-
ditionally) dependent on the sensitive attribute?” with
the question “Does the sensitive attribute have a causal
effect on the learning predictions?” Causal approaches

to defining fairness [36–39] are motivated by the
consideration that selection bias will result in a study
population different from the target population. This is
precisely the situation in many datasets of interest in
algorithmic fairness. For instance, in predicting recidi-
vism, the training data suffers selection bias leading to
a training population (reoffenders that were caught)
likely different from the target population (all would-be
reoffenders).

We propose a new causal fairness measure, which
assesses the average effect of a on the predicted probabili-
ties f𝜃(x) in the so-called overlap population introduced in
Li et al. [40]. The overlap population is of particular pol-
icy relevance. It is the subpopulation where the sensitive
attribute a occurs with equal probability, given the predic-
tion inputs x. For instance, in the context of recidivism pre-
diction, the overlap population is the subpopulation with
similar inputs, for example, criminal record, demographic
characteristics, who could easily be either Caucasian or
from a minority group. In contrast, many traditional causal
estimands focus on unrealistic target populations com-
prised of individuals who are atypical for their particular
value of a.

Adopting the potential outcome framework of Imbens
and Rubin [41] and assuming the Stable Unit Treatment
Value Assumption, suppose the outcome of interest o
takes on one of two potential outcomes, either o(0) or
o(1), depending on whether a = 0 or a = 1. Note that o =
o(1)a + o(0)(1 − a), that is, we can only ever observe one
of the two potential outcomes. Furthermore, suppose the
condition of unconfoundedness is satisfied, that is, a is
independent of {o(0), o(1)} conditional on x.

The average treatment effect for the overlap population
(ATO) introduced in Li et al. [40] is given by

𝜏ATO(o;P) = EP[e(x)(1 − e(x))(E(o(1)|x) − E(o(0)|x))]
EP[e(x)(1 − e(x))]

where e(x) = P(a = 1|x = x) is also called the propensity
score. Again, the term overlap refers to the fact that the
ATO articulates the causal effect among the overlap pop-
ulation which consists of subjects, given their covariates,
who could appear with substantial probability in either
value of the sensitive attribute. Consider measuring fair-
ness as the causal effect of a on the predicted probability
f𝜃(x) in the overlap population, that is,

U(𝜃) =
||||𝜏ATO

(
f𝜃(x);P

)|||| .
Its evaluation on the test set is straightforward. Define

U
(
𝜃, P̂test

)
=
||||𝜏ATO

(
f𝜃(x); P̂test

)|||| .
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Estimation of the ATO causal estimand first requires
estimating the propensity score. In our experiments, we
used a neural network to do this. We then calibrated the
predicted probabilities using the temperature scaling pro-
cedure of Guo et al. [42]. Further details follow in the
experiments section. For now, let ê(x) denote the propen-
sity score estimate. Li et al. [40] proposed estimating 𝜏ATO
as follows:

𝜏ATO(o) =
∑n

i=1aioiwi∑n
i=1aiwi

−
∑n

i=1 (1 − ai) oiwi∑n
i=1 (1 − ai)wi

, (5)

where wi are the so-called overlap weights given by

wi =

(
1 − ê (xi) if ai = 1

ê (xi) if ai = 0.
(6)

Notably, the overlap weights smoothly down-weigh
subjects in the tails of the propensity score distribu-
tion, thereby mitigating the common problem of extreme
propensity scores. In contrast, the standard inverse proba-
bility weights can suffer from excessive variance and corre-
spond to emphasis on a target population, which may con-
sist of subjects very atypical for their particular value of a.

In our experiments, we considered two possibilities for
Un(𝜃). In the first, we measure the average effect in the
overlap population of a on the penultimate layer of the
neural network, h(L−1) leading to

Un(𝜃) =
|||𝜏ATO

(
h(L−1))|||

=
∑n

i=1aih(L−1)
i wi∑n

i=1aiwi
−

∑n
i=1 (1 − ai)h(L−1)

i wi∑n
i=1 (1 − ai)wi

(7)

where wi are the overlap weights as in (6). In the second
option for Un, we measure the average effect of a on all
intermediate layers of the neural network, leading to

Un(𝜃) =
L−1∑
l=1

||||𝜏ATO

(
h(l)

)|||| . (8)

The benefits of learning fair internal representations in a
neural network were recognized in Madras et al. [27]. In
particular, we may expect doing so can safeguard against
bias in further downstream analyses, such as transfer
learning.

5 EXPERIMENTS

We apply the proposed Pareto front estimation proce-
dure to two benchmarking datasets in the algorithmic

fairness literature: the ProPublica recidivism dataset and
the UCI adult income dataset. The two datasets are sum-
marized in Table 1. We also examine two possibilities
for Un in Algorithm 1 corresponding to either (7) or (8),
that is, calculating the ATO in either the penultimate
layer or all intermediate layers of the neural network,
respectively.

5.1 Data preprocessing

Missing values were preprocessed according to the accom-
panying code. In the UCI dataset, we wish to predict
whether an individual has income above 50 K USD while
remaining fair with respect to gender. Separately, we wish
to perform the same prediction task in the UCI dataset
while remaining fair with respect to race. In the recidi-
vism dataset, we wish to predict whether an individual
will recommit a crime in 2 years while remaining fair
with respect to race. In total, we have three datasets—UCI
(gender), UCI (race), and recidivism.

5.2 Comparison to alternatives

For comparison, we implement, as a representative of
the regularization approach, the adversarial learning tech-
nique proposed in Louppe et al. [43], which is not based
on any specific fairness criterion. The idea is intuitive: the
classifier and adversarial are engaged in a zero-sum game.
Let 𝜃clf and 𝜃adv denote the parameters of the classifier and
adversarial network, respectively. The classifier network
attempts to make the best possible prediction of the binary
output y given the input x, while ensuring that a cannot
be predicted well from the predicted score p̂. The adver-
sary, on the other hand, attempts to make the best possible
prediction of the binary sensitive attribute a based on the
classifier’s prediction p̂. The adversary behaves according
to the objective,

min
𝜃adv

Lossa (𝜃clf, 𝜃adv) ,

where Lossa is associated to the prediction of the sensitive
attribute a given p̂. The classifier behaves according to

arg min
𝜃clf

[
Lossy (𝜃clf) − 𝛽Lossa

(
𝜃clf, 𝜃adv

)]
, (9)

where 𝛽 ∈ [0, 1] and Lossy measure the loss of predicting
y based on x. The binary cross-entropy loss is employed in
both objectives.
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T A B L E 1 Dataset descriptions

Dataset features

Dataset Dim(x) Dinary outcome y Sensitive a
Training
size

Testing
size

Minibatch
size

Recidivism 12 Re-offend in 2 years? binary race 3086 3086 150

UCI 93 Income above 50 K? binary race 15,470 15,470 1000

UCI 93 Income above 50 K? binary gender 15,470 15,470 1000

5.3 Experimental details

For each of the three datasets—UCI (gender), UCI (race),
and recidivism—the data are split into 100 training–testing
sets, with the split reported in Table 1. Then, for each
of the 100 training sets, we apply Algorithm 1 to find
Pareto front candidates with Rn corresponding to the
binary cross-entropy loss, Un given by either (7) or (8), and
Λ containing 15 different 𝜆 values in the interval [0, 1],
approximately evenly spaced on the log scale. Exact val-
ues used for Λ can be consulted in the accompanying
code.

5.4 Propensity score network

To calculate Un in either (7) or (8), propensity scores must
first be estimated. We used the same neural network archi-
tecture in all three datasets to estimate the propensity
scores P(a = 1|x). The network has three fully connected
layers, with 32 hidden units each, interspersed with a
dropout layer with dropout probability 0.2. The ReLU acti-
vation function is used in all intermediate layers while the
sigmoid function is used in the output layer.

Since the propensity score network is performing
binary classification of a based on input x, we used
the binary cross-entropy loss. The Adam optimization
algorithm [44] was used to train the propensity network.
The learning rate is set to 0.001. Training took place over
100 epochs. Mini-batch size is reported in Table 1 and was
chosen to be around 5% of the training set size. After the
propensity network is trained, we calibrate the probabil-
ity prediction according to the methodology proposed in
Guo et al. [42] where we used their GitHub code with no
modification.

5.5 Architecture f𝜽

The architecture of the neural network f𝜃 in Algorithm 1
is reported in Table 2. The number of fully connected
layers and number of hidden nodes in each layer (held
constant over the layers) were tuned for each data setting

T A B L E 2 f𝜃 network architecture

Neural network features

Dataset Layers L Hidden nodes

Recidivism 4 4

UCI 32 10

with the goal of not incurring over-fitting in the held-out
test set. Each fully connected layer is interspersed with a
dropout layer with dropout probability 0.2. The ReLU acti-
vation function is used in all intermediate layers, while the
sigmoid function is used in the output layer.

To learn the network f𝜃 in Algorithm 1, we again
use Adam. The initial learning rate is set to 0.001. We
reduce the learning rate when the training loss has stopped
decreasing by using the ReduceLROnPlateau scheduler
in PyTorch, setting the factor and patience variables to
0.9 and 10, respectively. All training took place over 500
epochs. Mini-batch sizes are as reported in Table 1.

5.6 Adversarial alternative

Our implementation of the adversarial technique of
Louppe et al. [43] is based on GoDataDriven’s code base.
The following steps are alternated over 200 epochs: (1)
train the adversarial network for a single epoch, holding the
classifier network fixed, and (2) train the classifier network
on a single sampled mini batch, holding the adversarial
network fixed.

The adversarial network has 4 hidden layers with
32 hidden units in each. The ReLU activation was used
throughout except in the final layer where the sigmoid
function is used. The adversarial network was pretrained
for 5 epochs. For the classifier network, we employed the
same network as that of f𝜃 in Algorithm 1 and kept all
training choices, such as the optimisation algorithm and
mini-batch size, the same. The classifier was pretrained
for 2 epochs. Further implementation details for the
adversarial approach can be found in the accompanying
code.
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F I G U R E 4 Pareto front estimation in the UCI (gender) test set. Each three by one block corresponds to a different fairness evaluation
in Table 3. Within each block, the row corresponds to different Pareto front estimation procedures—“ATO one layer” refers to Algorithm 1
employing the ATO causal estimand in the penultimate layer as Un, “ATO all layers” refers to Algorithm 1 with the ATO causal estimand
calculated over all intermediate layers and lastly the adversarial approach. In each subplot, 1500 candidates are displayed along with the
culled Pareto front in dashed magenta. The accuracy x-axis plots R

(
𝜃, P̂test

)
and the fairness y-axis plots U

(
𝜃, P̂test

)

5.7 Results

In summary, we have three datasets and apply Algorithm 1
with two possibilities of Un. We also apply the adversarial
technique to each of the three datasets for comparison.

We present the results for the UCI (gender) dataset in
Figure 4. The results for UCI (race) and recidivism can be
found in Figure B1 and Figure B2 in Appendix A, respec-
tively. Each three-by-one block in Figure 4 corresponds to
a different fairness measure U

(
𝜃, P̂test

)
in Table 3. Within

each block, the rows correspond to a different approach to
finding the Pareto candidates.

Since 15 values of 𝜆 and 100 training–testing splits are
considered, the output of Algorithm 1, candidates, con-
sists in total 1500 learned network parameters. The 1500
experiments were run in parallel using high performance
computing resources. It should be noted that the indi-
vidual nodes used are less powerful than many personal
workstations, and even so, a single training run takes only
about 30 min.

The results of applying Algorithm 1 with Un(𝜃) =|||𝜏ATO
(
h(L−1))||| and Un(𝜃) =

∑L−1
l=1

||||𝜏ATO

(
h(l)

)|||| are shown

in the first and second rows of each three-by-one block

T A B L E 3 In visualizing the estimated Pareto front, we
plot for each candidate 𝜃 its value in the fairness-accuracy space
R
(
𝜃; P̂test

)
versus U

(
𝜃; P̂test

)
, as given below for four different

choices of U
(
𝜃; P̂test

)
ATO

||||𝜏ATO

(
f𝜃(x); P̂test

)||||
Equal odds (EO) MV

(
f𝜃(x), a ∣ y; P̂test

)
Equal opportunity (EOpp) MV

(
f𝜃(x), a ∣ y = 1; P̂test

)
Demographic parity (DP) MV

(
f𝜃(x), a; P̂test

)
Note: The development of the MV estimators are introduced in the
Appendix B.

in Figure 4, respectively. In each sub-figure, we plot for
each 𝜃 ∈ candidates, its value in the fairness-accuracy
space, R

(
𝜃, P̂test

)
versus U

(
𝜃, P̂test

)
. We further display

the Pareto front culled from these 1500 Pareto candidates
where the culling simply discards the dominated points.

The result of the adversarial approach is displayed in
the third row of each three-by-one block of Figure 4. Fif-
teen values of 𝜆 in (9) along with 100 training–testing splits
are considered, producing in total 1500 𝜃clf, each of which
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T A B L E 4 Each row corresponds to a different
approach of finding the fairness-accuracy Pareto front

UCI
(gender)

UCI
(race) Recidivism

ATO one layer 44 33 89

ATO all layers 27 27 53

Adversarial 13 9 27

Note: Each column corresponds to a different dataset. The individual
cells report the number of nondominated points (higher is better)
calculated in the space

(
R
(
𝜃, P̂test

)
,U

(
𝜃, P̂test

))
where

U
(
𝜃, P̂test

)
=
||||𝜏ATO

(
f𝜃(x); P̂test

)||||. ATO one layer refers to Algorithm

1 where Un is the ATO calculated on the penultimate layer, while
ATO all layers refers to the ATO calculated over all intermediate
layers.

is plotted in the fairness-accuracy space, R
(
𝜃, P̂test

)
versus

U
(
𝜃, P̂test

)
.

We can immediately see from Figure 4 that compared
to Algorithm 1, the adversarial approach is less capable
of finding a Pareto front that spans the fairness-accuracy
space. Indeed, Table 4 shows that the set of nondominated
points found by the adversarial approach is much smaller
relative to Algorithm 1.

We also observe better Pareto front estimation when
Algorithm 1 is applied with Un as the ATO causal measure
calculated in the penultimate layer, compared to the ATO
calculated over all layers. This seems to be true of the two
other data settings as well, as can be seen in Appendix A.
This suggests using (8) for Un makes training the neural
network more difficult. It may be worthwhile to explore
training the network one layer at a time in future work.

Finally, from Figure 4, we can see that the demographic
parity, equal odds, and equal opportunity fairness mea-
sures tend to form distinct clumps in the fairness-accuracy
space, relative to the ATO causal measure. Results for UCI
(race) and recidivism contained in Appendix A indicate
much of the same conclusions. Appendix A also contains
further visualization on the distributions of the prediction
probabilities as 𝜆 in Algorithm 1 is dialed between 0 and 1.

6 FUTURE WORK

We have found standardization of the objectives to be
crucial as a preprocessing step. Recent works such as Grad-
Norm [45] may offer a way to simultaneously standardize
as we train rather than as a preprocessing step. We also dis-
covered that the Chebyshev scalarization scheme, though
superior to the linear scalarization scheme, is still seen
to often produce dominated points. This may not be a
particular fault of the Chebyshev scalarization scheme,

rather the phenomenon is likely due to the fact that we can
never perform optimization perfectly, especially for deep
neural networks using stochastic optimization algorithms.
Barring this practical difficulty, as Chebyshev scalariza-
tion only leads to weakly Pareto optimal solutions, there
still may be theoretical grounds for improvement. We may
do better by using for example, the hypervolume indicator
[46] to find points that are Pareto optimal. This has its own
challenges, as the hypervolume indicator is expensive to
calculate in higher dimensions.

Our experiments also reveal the difficulty of selecting
weights in the Chebyshev scalarization scheme in such
a way that would lead to a wide diversity of Pareto opti-
mal points. In fact, many different weights often produced
nearly identical solutions. Appropriately specifying the
weights in a scalarization scheme without a priori infor-
mation on the shape of the Pareto front itself is an open
problem in multiobjective optimization. We had stated
earlier that adaptive weights would be an improvement
to the current methodology. This certainly merits further
study, but the following challenges can be anticipated.
Adapting the weights while training the neural network
fundamentally changes the convergence behavior of the
optimization algorithm since the optimization problem
itself is gradually changing. It is already a nontrivial affair
to train a deep neural network, and so we expect the
addition of weight adaptation will require careful tinker-
ing to the training process. Furthermore, many adaptive
weight schemes seem to depend on the Pareto front shape
itself. Without a better understanding of the Pareto front,
we might do more harm by using an unsuitable weight
adaptation technique.
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APPENDIX A. ADDITIONAL FIGURES

In this section, we provide additional figures for the
experiments conducted in “The Fairness-Accuracy Pareto
Front.” Figures B1 and B2 here are analogous to Figure 4 in
the main text. The figures report, respectively, the results
for the UCI (race) and recidivism dataset. Within each
three-by-one block, the results of various Pareto estima-
tion procedures are reported. Each block of subfigures
corresponds to a different U

(
𝜃; P̂test

)
.

We also provide figures that help visualize the effect of
dialing 𝜆 in Algorithm 1 of the main text from 0 to 1. In
Figure B3, we display the distribution of the classifier’s pre-
diction in the UCI (gender) dataset broken down by class
label and sensitive attribute. Each panel of Figure B3 is a
different 𝜆 value. In addition to reporting the ATO mea-
sure of fairness, we also indicate other noncausal fairness
metrics including Equalized Odds, Equal Opportunity,
and Demographic Parity. Similar visualization for the UCI
(race) and recidivism dataset can be found in Figures B4
and B5, respectively.

APPENDIX B. ESTIMATION OF DEMO -
GRAPHIC AND CONDITIONAL PARITY

We describe a quantitative index that measures the degree
to which conditional parity holds. First, recall we say a
prediction score Ŝ exhibits conditional parity with respect
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F I G U R E B1 Pareto front
estimation in the UCI (race) data
set. Each three by one block
corresponds to a fairness measure
in Table 3 of the main document.
Within each block, the row
corresponds to different Pareto front
estimation procedure—“ATO one
layer” refers to Algorithm 1 in the
main document employing the ATO
causal estimand in the penultimate
layer as Un, “ATO all layers” refers
to Algorithm 1 with the ATO causal
estimand calculated over all layers
and lastly the adversarial approach.
In each subplot, 1500 candidates
are displayed along with the culled
Pareto front displayed in dashed
magenta
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F I G U R E B2 Pareto front
estimation in the recidivism data
set. Each three by one block
corresponds to a fairness measure
in Table 3 of the main document.
Within each block, the row
corresponds to different Pareto front
estimation procedure—“ATO one
layer” refers to Algorithm 1 in the
main document employing the ATO
causal estimand in the penultimate
layer as Un, “ATO all layers” refers
to Algorithm 1 with the ATO causal
estimand calculated over all layers
and lastly the adversarial approach.
In each subplot, 1500 candidates
are displayed along with the culled
Pareto front displayed in dashed
magenta
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to sensitive attribute Z conditioned on U if Z and U are
independent conditional on U. We will limit the scope to
categorical U and categorical Z. The conditional indepen-
dence statement Ŝ ⟂⟂ Z ∣ U is typically assessed using the
Cochran-Mantel-Haenszel test when Ŝ and Z are binary
variables and U is another, let us say k-level, categori-
cal variable. Conditional independence in this case sim-
ply reduces to equality of odds ratios in each of the k
two-by-two contingency tables.

A more sophisticated method is required to assess
conditional parity when Ŝ is continuous. In the follow-
ing, we introduce an index for conditional parity by
adapting the mean–variance statistic of [35], which is
not directly applicable as it is designed for unconditional

independence assessment between a continuous variable
and a categorical variable.

B.1.The mean–variance index
Without loss of generality, suppose the categorical random
vector Z takes value in the set {z1, … , zR}. Let Fr(s) =
P
(

Ŝ ≤ s|Z = zr

)
be the conditional distribution of Ŝ given

Z = zr. Let F(s) = P(Ŝ ≤ s) be the unconditional distribu-
tion of Ŝ. The mean–variance index Cui et al. [35] is given
by

MV =
R∑

r=1
P (Z = zr)∫ [Fr(s) − F(s)]2 dF(s), (B1)
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F I G U R E B3 For a particular
training–testing split of the UCI
(gender) dataset, we display the
distributions of the predicted
probabilities in the test set for four
different values of 𝜆, where 𝜆 is
indicated by p_penalty in the
heading of each plot. The
distributions are broken down by
different values of the true target
label y and the sensitive attribute z.
Besides the ATO measure
(causal), we also indicate
equalized odds (mv_EO), equality
of opportunity (mv_EOpp), and
demographic parity (mv_DP) in the
headings of the subplots

F I G U R E B4 For a particular
training–testing split of the UCI
(race) dataset, we display the
distributions of the predicted
probabilities in the test set for four
different values of 𝜆, where 𝜆 is
indicated by p_penalty in the
heading of each plot. The
distributions are broken down by
different values of the true target
label y and the sensitive attribute z.
Besides the ATO measure
(causal), we also indicate
equalized odds (mv_EO), equality
of opportunity (mv_EOpp), and
demographic parity (mv_DP) in the
headings of the subplots

where P (Z = zr) > 0 for all 𝑗 = 1, … , r. Note that the inte-
gral in (B1) is simply the Cramér-von Mises distances
between Fr and F, and so the mean–variance statistic is
the weighted average of these distances, weighted by how

likely a particular value of Z is. If Ŝ and Z are inde-
pendent, then Fr(s) = F(s) for all r = 1, … ,R. Thus the
mean–variance index in (B1) has the salient property that
it is zero if and only if Ŝ ⟂⟂ Z.
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F I G U R E B5 For a particular
training–testing split of the
recidivism dataset, we display the
distributions of the predicted
probabilities in the test set for four
different values of 𝜆, where 𝜆 is
indicated by p_penalty in the
heading of each plot. The
distributions are broken down by
different values of the true target
label y and the sensitive attribute z.
Besides the ATO measure
(causal), we also indicate
equalized odds (mv_EO), equality
of opportunity (mv_EOpp), and
demographic parity (mv_DP) in the
headings of the subplots

Let the notation 1{⋅} denote indicator function of an
event, that is, it is 1 if the event happens and 0 other-
wise. The plug-in estimator for (B1) based on a sample{(

Ŝi,Zi

)
, i = 1, … ,n

}
is

M̂V =
R∑

r=1
P̂ (Z = zr)

[
1
n

n∑
i=1

[
F̂r

(
Ŝi

)
− F̂

(
Ŝi

)]2
]

(B2)

where

P̂ (Z = zr) = n−1
n∑

i=1
1 {Zi = zr} ,

F̂r(s) =

∑n
i=11

{
Ŝi ≤ s,Zi = zr

}
∑n

i=11 {Zi = zr}
,

F̂(s) = 1
n

n∑
i=1

1
{

Ŝi ≤ s
}
.

That the estimator in (B2) is consistent for its theoretical
counterpart in (B1), that is, M̂V converges in probability to
MV as n → ∞, is established in Cui et al. [35].

B.2.A new index to measure conditional parity
Now let us return to the assessment of Ŝ ⟂⟂ Z ∣ U. Suppose
the categorical random vector U takes value in the set
{u1, … ,uK}. Then, we propose the following as a direct
extension of the mean–variance statistic of Cui et al. [35]

to the conditional case:

MVk =
R∑

r=1
Pk (Z = zr)∫

[
Fr,k(s) − Fk(s)

]2 dFk(s) (B3)

where

Pk (Z = zr) = P (Z = zr|U = uk)

Fr,k(s) = P
(

Ŝ ≤ s|Z = zr,U = uk

)
Fk(s) = P

(
Ŝ ≤ s|U = uk

)
.

We employ the following statistic to assess the degree to
which Ŝ ⟂⟂ Z ∣ U holds:

max
k=1,… ,K

MVk(Ŝ,Z). (B4)

Since MVk is zero if and only if Ŝ is independent of Z con-
ditioned on U and the same is true for the maximum. In
other words, (B4) is zero if and only if Ŝ ⟂⟂ Z ∣ U.

Since (B3) and (B4) are both unknown population
quantities, they require estimation. Let M̂Vk be the plug-in
estimator for (B3) based on the empirical measure.
Namely, let

M̂Vk(Ŝ,Z) =
R∑

r=1
P̂k (Z = zr)∫

[
F̂r,k(s) − F̂k(s)

]2
dF̂k(s)
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where

P̂k (Z = zr) =
∑n

i=11 {Zi = zr,Ui = uk}∑n
i=11 {Ui = uk}

F̂r,k(s) =

∑n
i=11

{
Ŝi ≤ s,Zi = zr,Ui = uk

}
∑n

i=11 {Zi = zr,Ui = uk}

F̂k(s) =

∑n
i=11

{
Ŝi ≤ s,Ui = uk

}
∑n

i=11 {Ui = uk}
.

To estimate (B4), we simply take the maximum over k:

max
k=1,… ,K

M̂Vk. (B5)

We will call the quantity in (B5) the conditional
mean–variance index. Note that this measure will be
zero if conditional independence holds and will increase
with increasing dependence. Hence, it is a suitable mea-
sure to assess conditional parity.


	The fairness-accuracy Pareto front 
	1 INTRODUCTION
	1.1 Linear scalarization
	1.2 Proposal

	2 RELATED WORK
	2.1 Multiobjective optimization in machine learning and statistics
	2.2 Algorithmic fairness

	3 THE FAIRNESS-ACCURACY PARETO FRONT
	3.1 Chebyshev scalarization
	3.2 Estimates of the individual components
	3.3 Standardization
	3.4 Pareto front candidates
	3.5 Visualization of results

	4 FAIRNESS MEASURES
	4.1 Demographic parity and conditional parity
	4.2 Causal fairness in the overlap population

	5 EXPERIMENTS
	5.1 Data preprocessing
	5.2 Comparison to alternatives
	5.3 Experimental details
	5.4 Propensity score network
	5.5 Architecture<?xmltex?><0:query0:id="Q5" 0:lwPstyle="AQ" ><0:p>Please check and confirm the hierarchy of the section headings.</0:p></0:query> [[math]]
	5.6 Adversarial alternative
	5.7 Results

	6 FUTURE WORK
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST


	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	APPENDIX A. ADDITIONAL FIGURES
	APPENDIX B. ESTIMATION OF DEMOGRAPHIC AND CONDITIONAL PARITY
	B.1. The mean--variance index
	B.2. A new index to measure conditional parity

