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Summary

We propose a projection pursuit technique in survival analysis for finding lower-dimensional
projections that exhibit differentiated survival outcomes. This idea is formally introduced as
the change-plane Cox model, a nonregular Cox model with a change-plane in the covariate
space that divides the population into two subgroups whose hazards are proportional. The pro-
posed technique offers a potential framework for principled subgroup discovery. Estimation of
the change-plane is accomplished via likelihood maximization over a data-driven sieve con-
structed using sliced inverse regression. Consistency of the sieve procedure for the change-plane
parameters is established. In simulations the sieve estimator demonstrates better classification
performance for subgroup identification than alternatives.

Some key words: Latent supervised learning; Projection pursuit; Random projection; Sieve estimation; Sliced inverse
regression; Subgroup discovery.

1. Introduction

Projection pursuit, the analysis of high-dimensional data via lower-dimensional projections,
is a common tool in exploratory data analysis. The idea is to search for projections that reveal
interesting structure in the data. In this paper we present a projection pursuit technique in sur-
vival analysis, where a projection is considered interesting if it leads to a separation of survival
outcomes. The proposed technique is based on the change-plane Cox model, set forth below.

Let (X , Z , U ) be a random vector of covariates, where X ∈ R
p, Z ∈ R

q1 and U ∈ R
q2 . Let S

p

be the collection of unit vectors in R
p. The following assumptions constitute the change-plane

Cox model.

Assumption 1. The hazard function of the true survival time T ◦ has the form

λ(t | X , Z , U ) = exp{βT
1Z + β21(ωTX � γ ) + βT

3Z1(ωTX � γ ) + βT
4U }λ(t), (1)
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892 S. Wei AND M. R. Kosorok

where ω is an element of S
p, γ is in some known interval [a, b], β = (β1, . . . , β4) is the vector

of regression parameters, with at least one of β2 or β3 being nonzero for identifiability, and λ(t)
is an unknown baseline hazard function.

Assumption 2. The survival time T ◦ with hazard function (1) may be subject to right-censoring
at a censoring time C which, conditional on (X , Z , U ), is independent of T ◦;

Assumption 3. X and (Z , U ) are independent.

We observe the covariate vector (X , Z , U ), the censored time T = min(T ◦, C), and the cen-
soring indicator δ, where δ = 1 if T ◦ � C and δ = 0 otherwise. By seeking the change-plane,
given by ωTX = γ , we accomplish our goal of finding a lower-dimensional projection of X that
reveals two subgroups with differentiated survival outcomes.

To fix ideas, imagine X to be a set of biomarkers potentially predictive of survival, Z a
categorical treatment variable, and U a set of baseline covariates such as age or gender. In this
case, the regression coefficient β3 represents the interaction effect between treatment and the
subgroup indicator 1(ωTX � γ ). A significant β3 is of practical interest since it would suggest
the presence of treatment heterogeneity.

Rigorous assessment of β’s significance is likely to be challenging in light of the results of
Pons (2003). In that paper it is shown that for a certain change-point Cox model, which may
be viewed as a special case of (1), the maximum partial likelihood estimator for the change-
point is n-consistent but root-n-consistent for the regression coefficients. Such nonregularity
can be expected in the change-plane Cox model as well. Leaving distributional theory to future
work, we propose a resampling procedure in the Supplementary Material that serves as a heuris-
tic for assessing the significance of β. However, we have not yet ascertained the rigour of
this bootstrap-based assessment of significance in light of established bootstrap consistency
theory.

2. Methodology

2·1. Overview

In this section we propose an estimation scheme for the change-plane parameters in (1) based on
a sample of n independent and identically distributed replicates of (R, T , δ), where R = (X , Z , U )

denotes the full covariate set. The maximum partial likelihood estimator of the change-plane
parameters can incur overfitting even when the dimension of X is moderately high, such as
p = 25. This leads us to employ a regularization technique known as Grenander’s method of
sieves (Grenander, 1981), in which maximization takes place over an approximating subset of
the parameter space called a sieve. It is desired that the sieve be dense, in a sense made rigorous
in Definition 2. Interestingly, as demonstrated by Geman & Hwang (1982) in the context of
nonparametric density estimation, regularization of the likelihood via the method of sieves may
produce consistent estimators even when the full maximum likelihood estimator is inconsistent.

A sieve maximization scheme for fitting (1) is as follows. Collect the parameters into θ =
(β, ω, γ ). The sample log partial likelihood under (1) is

Ln(θ) = n−1
n∑

i=1

(
δiη(Ri, θ) − δi log

[ ∑
j:Tj�Ti

n−1 exp{η(Ri, θ)}
])

, (2)
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Change-plane Cox model 893

where η(R, θ) = βT
1Z + β21(ωTX � γ ) + βT

3Z1(ωTX � γ ) + βT
4U . The factor n−1 is included

for consistency with the empirical process notation in § 3. Let

Mn(ω, γ ) = Ln{β̂n(ω, γ ), ω, γ }, (3)

where the quantity β̂n(ω, γ ) = arg maxβ Ln(β, ω, γ ) is uniquely defined and can be found via
Newton’s method. We shall focus on the estimation of ω since, once it is determined, the other
parameters in (1) can be estimated by profiling.

Definition 1. For a sieve 	n ⊂ S
p, the corresponding sieve estimator for ω in (1) is ω̂(	n) =

arg maxω∈	n
Mn{ω, γ̃ (ω)} where

γ̃ (ω) = arg max
γ∈[a,b]

Mn(ω, γ ). (4)

The success of the sieve estimator hinges on the specification of the sieve. The remainder of
§ 2 describes the construction of a data-driven sieve.

2·2. Initialization of the sieve

Algorithm 1 details the construction of an initial sieve consisting of vectors that represent
possible change-planes in the X covariate space. Consideration of computation time leads to the
particular choices in Algorithm 1, such as the number of clusters K , chosen deliberately so that
|	0| is linear in n. Similarly, the discarding of clusters with fewer than four elements and the
downsampling of clusters with more than ten elements are merely for computational gain. To get
a sense of the size of 	0, Algorithm 1 applied to the simulations in § 4 results in |	0| ≈ 3000
for sample size n = 100. If computation time is not a factor, better empirical performance
of the overall sieve procedure, Algorithm 2, has been observed for 	0 in Algorithm 1 with a
larger number of elements. In particular, our claim is supported by various simulations we have
conducted, including the ones presented in § 4.

Algorithm 1. Initial sieve 	0.

Input : {X1, . . . , Xn}
Initialize 	0 to the empty set.
Set K to n/10.
Partition the data {X1, . . . , Xn} into K clusters using K-means clustering.
Discard clusters with fewer than four elements.
Retain ten elements at random for clusters with more than ten elements.
foreach remaining cluster do

foreach non-overlapping partition of the cluster into two parts P1 and P2 do
Add to 	0 the unit-length vector that connects the centroids of P1 and P2.

Output: 	0

2·3. Updating the sieve using sliced inverse regression

We next update 	0 by incorporating survival information using sliced inverse regression (Li,
1991). This is based on a model in which a response variable S and a covariate vector X in R

p
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894 S. Wei AND M. R. Kosorok

satisfy

S = f (κT
1 X , . . . , κT

k X , ε) (5)

for unknown constant vectors κj of the same dimension as X , an unknown function f , and a
noise term ε that is independent of X . Let � = cov(X ). If for any b ∈ R

p the conditional
expectation E(bTX | κT

1 X , . . . , κT
k X ) is linear in κT

1 X , . . . , κT
k X , then for every s the centred

inverse regression curve, E(X | S = s)−E(X ), lies in the span of {�κ1, . . . , �κk}. This condition
on the design distribution is satisfied by X with elliptically symmetric distribution. Under this
linearity condition, the space spanned by the k eigenvectors of the covariance matrix of E(X | S)

associated with the k largest eigenvalues coincides with the span of {�κ1, . . . , �κk}. The span of
{κ1, . . . , κk} itself can be obtained through standardization by �−1. The inverse regression curve
is estimated empirically by slicing the range of S into H non-overlapping intervals I1, . . . , IH and
computing the sample version of E(X | S ∈ Ih).

The subscript zero will be used to denote the true parameter value under (1). The survival
time T ◦ with hazard function (1) satisfies (5) with ω0. Consider the following condition on the
distribution of X in the change-plane Cox model.

Condition 1. For any b ∈ R
p, E(bTX | ωT

0X ) is linear in ωT
0X .

Under Condition 1, the recovery of ω0 in the change-plane Cox model can be accomplished
via eigendecomposition of the covariance matrix of E(X | T ◦), followed by standardization
using �−1. To avoid issues in estimating � and �−1 using their sample versions, we assume that
n > p. However, rather than slicing on T ◦, we slice simultaneously on T ◦ and on 1{ωTX � γ̃ (ω)},
where ω ∈ 	0. Let 0 = t1 < · · · < tH < ∞ = tH+1 be a partition of the positive real line into
non-overlapping intervals Ih = [th, th+1). Let ν(ω) denote the largest-eigenvalue eigenvector of
the weighted covariance matrix

V (ω) =
1∑

l=0

H∑
h=1

phl(ω){mhl(ω) − E(X )}{mhl(ω) − E(X )}T, (6)

where

mhl(ω) = E[X | T ◦ ∈ Ih, 1{ωTX � γ̃ (ω)} = l],
phl(ω) = pr[T ◦ ∈ Ih, 1{ωTX � γ̃ (ω)} = l].

Under Condition 1, the rescaled eigenvector �−1ν(ω) coincides with the desired ω0.
We now describe an estimate of V (ω) that accounts for censoring by employing the

conditioning argument in Li et al. (1999). First, we have

mh1(ω) = E[X 1{T ◦ � th, ωTX � γ̃ (ω)}] − E[X 1{T ◦ � th+1, ωTX � γ̃ (ω)}]
E[1{T ◦ � th, ωTX � γ̃ (ω)}] − E[1{T ◦ � th+1, ωTX � γ̃ (ω)}] ,

which can be further decomposed as

E[X 1{T ◦ � t, ωTX � γ̃ (ω)}]
= E[X 1{T � t, ωTX � γ̃ (ω)}] + E[X 1{T < t, δ = 0, ωTX � γ̃ (ω)}α(T , t, X )],
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Change-plane Cox model 895

where

α(t′, t, X ) = pr(T ◦ � t | X )/pr(T ◦ � t′ | X ), t′ < t, (7)

can be interpreted as a weight adjusting for the presence of censoring. This decomposition allows
us to rewrite the numerator of mh1(ω) as

E[X 1{T ◦ � th, ωTX � γ̃ (ω)}] − E[X 1{T ◦ � th+1, ωTX � γ̃ (ω)}]
= E[X 1{th � T � th+1, ωTX � γ̃ (ω)}] + E[X 1{T < th, δ = 0, ωTX � γ̃ (ω)}α(T , th, X )]

− E[X 1{T < th+1, δ = 0, ωTX � γ̃ (ω)}α(T , th+1, X )].
Thus we can slice on the observed survival time T rather than on T ◦. Let

ĉi,h1(ω) = 1{th � Ti < th+1, ωTXi � γ̃ (ω)}
+ 1{Ti < th, δi = 0, ωTXi � γ̃ (ω)}α̂(Ti, th, Xi)

− 1{Ti < th+1, δi = 0, ωTXi � γ̃ (ω)}α̂(Ti, th+1, Xi),

where α̂(· , · , ·) denotes a nonparametric estimate of (7) to be discussed in § 2·4. To estimate mh1
and ph1, we use the sample moments

m̂h1(ω) =
n∑

i=1

Xiĉi,h1(ω)

/ n∑
i=1

ĉi,h1(ω)

and p̂h1(ω) = n−1 ∑n
i=1 ĉi,h1(ω), respectively. The estimation of mh0 and ph0 is analogous. These

components are incorporated into the data-driven sieve detailed in Algorithm 2. Let the resulting
sieve be denoted by 	̂n. The sieve estimator associated with it will be written as ω̂(	̂n), following
the notation introduced in Definition 1.

Algorithm 2. Data-driven sieve 	̂n based on sliced inverse regression.

Input : (Xi, Ti, δi) for i = 1, . . . , n;
H , the number of slices;
	0, the initial sieve;
α̂(· , · , ·), censoring weight estimate.

Initialize 	̂n ⊂ S
p to the empty set.

Find �̂, the empirical covariance matrix based on X1, . . . , Xn.
Set {th}∞h=1 according to the observed range of the Ti divided into H equal intervals with
t1 = 0 and tH+1 = ∞.

Find α̂(Ti, th+1, Xi) for i = 1, . . . , n and h = 1, . . . , H .
foreach ω ∈ 	0 do

Find V̂n(ω) = ∑1
l=0

∑H
h=1 p̂hl(ω){m̂hl(ω) − X̄ }{m̂hl(ω) − X̄ }T.

Find the largest-eigenvalue eigenvector of V̂n(ω) and denote this by ν̂n(ω).
Add �̂−1ν̂n(ω), normalized to unit length, to 	̂n.

Output: 	̂n

Algorithm 2 is rather insensitive to H , and we recommend setting H = 10. Far more critical
for Algorithm 2 is the estimation of the censoring weight, the focus of the next subsection.
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896 S. Wei AND M. R. Kosorok

2·4. Estimation of censoring weights

The estimation of the censoring weight α in (7) reduces to that of pr(T ◦ � t | X ), the
conditional survival function of T ◦. We shall consider two nonparametric estimates of the latter,
and hence of (7) itself. The first is the nonparametric kernel estimator of Dabrowska (1987),
which is described in equations (3.11)–(3.13) of Li et al. (1999) in notation similar to ours. The
corresponding censoring weight estimate will also be referred to as Beran’s kernel estimate.

The performance of Beran’s kernel estimate quickly deteriorates as the dimension of X
increases; this may be overcome by machine learning techniques. We shall employ the recursively
imputed survival tree method proposed by Zhu & Kosorok (2012), a powerful, albeit complex,
method for estimating the conditional survival function for censored data.

The recursively imputed survival tree combines imputation of censored observations with the
idea of extremely randomized trees. Like the random forest, the extremely randomized tree selects
a subset of candidate features at random. However, it does not search for the most discriminative
cut-points as in the random forest, instead basing itself on random thresholds for each covariate.
The imputation of censored observations enables more terminal nodes, and hence more complex
trees, to be constructed. Full details of the recursively imputed survival tree algorithm are given
in the Supplementary Material. We have found that the recursively imputed survival tree estimate
of α leads to better performance of Algorithm 2 than does Beran’s kernel estimate, as soon as the
dimension of X increases beyond p > 5.

3. Consistency

Theorem 1 below establishes the consistency of the sieve estimator corresponding to a general
sieve 	n under the following conditions.

Condition 2. The parameter θ0 = (β0, ω0, γ0) lies in a compact subset � = �1 × �2 of
R

2q1+q2+1 × S
p × [a, b], where �1 and �2 are compact subsets of R

2q1+q2+1 and S
p × [a, b],

respectively.

Condition 3. The covariate X has a continuous distribution, and the projection ωT
0X has a

strictly bounded and positive density f over [a, b].
Condition 4. The probability pr(C = 0) = 0. There exists a τ ∈ (0, ∞) such that pr(C � τ |

X ) = pr(C = τ | X ) > 0 almost surely.

Condition 5. The variables Z and U lie in bounded sets.

Conditions 2 and 3 are rather technical and simplify the proof. Condition 4 is common in
survival analysis, though it is not precisely true in practice, for example in a clinical trial with
staggered entry. Condition 5 is needed for an application of the dominated convergence theorem.
The statement of Theorem 1 requires a definition first.

Definition 2. A sieve 	n ⊂ S
p is said to be dense for (1) if there exists a sequence ωn ∈ 	n

such that {ωn, γ̃ (ωn)} converges to (ω0, γ0) as n → ∞.

Theorem 1 (Consistency of general sieve estimator). Assume Conditions 2–5 and let 	n ⊂ S
p

be a dense sieve for (1). If ω̂n = ω̂(	n) denotes the sieve estimator, then {ω̂n, γ̃ (ω̂n)} is consistent
for (ω0, γ0) as n → ∞.
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Change-plane Cox model 897

The proof of Theorem 1 can be found in the Appendix. Corollary 1 establishes the consistency
of the sieve estimator corresponding to Algorithm 2 under Condition 1 and the following meta-
condition.

Condition 6. The censoring weight estimate α̂ is such that for every ω ∈ 	0, m̂hl(ω) is
consistent for mhl(ω) as n → ∞ for h = 1, . . . , H and l = 0, 1.

Although we will limit our discussion of Condition 6 to the two estimators considered in § 2·4,
its specification is left broad to allow for other possible censoring weight estimators.

For Beran’s kernel estimate, the arguments in the proof of Lemma 3.1 in Li et al. (1999) can be
used to verify Condition 6. The application of Lemma 3.1 requires regularity conditions labelled
therein as (B.1), (B.3), (B.5) and (B.8), which mostly pertain to the relationship between the
bandwidth rate and the bias and variance terms of the kernel estimate.

As for the recursively imputed survival tree estimate of α, Theorem 1 of Cui et al. (2017)
addresses the consistency of estimating the underlying hazard function using a similar survival
tree-based method. In both cases, a single tree is partitioned enough that the failure and censoring
observations in the terminal nodes are approximately independent while maintaining a sufficient
number of observations. In Theorem 1 of Cui et al. (2017), this is used to establish consistency
of the resulting local Nelson–Aalen estimators for the conditional hazard estimators. For the
recursively imputed survival tree, the Kaplan–Meier estimator is used instead of the Nelson–Aalen
estimator.

For both Lemma 3.1 in Li et al. (1999) and Theorem 1 in Cui et al. (2017), suitable smoothness
of the conditional survival function is most convenient for ascertaining the key conditions. Under
Condition 3, the region where the smoothness is not met by the change-plane Cox model, i.e.,
the change-plane, can be bounded by a region with arbitrarily small probability.

Corollary 1 (Consistency of sieve estimator corresponding to Algorithm 2). Let 	̂n denote
the sieve produced by Algorithm 2 for some nonempty initial sieve 	0. Suppose that Conditions
1–6 hold. If ω̂n = ω̂(	̂n) denotes the sieve estimator, then {ω̂n, γ̃ (ω̂n)} is consistent for (ω0, γ0)

as n → ∞.

Proof. Let ω ∈ 	0. Through conditioning,

mh1(ω) = E{X | T ◦ ∈ [th, th+1), ω
TX � γ̃ (ω)}

= E{E(X | T ◦) | T ◦ ∈ [th, th+1), ω
TX � γ̃ (ω)}.

A similar identity holds for mh0. By Condition 1, ν(ω), the largest-eigenvalue eigenvector of (6),
is a scalar multiple of �ω0. By Condition 6, the individual components in V̂n(ω) are consistent
for their theoretical counterparts. Thus, as n → ∞, V̂n(ω) is consistent for V (ω), and hence the
eigenvector ν̂n(ω) is consistent for ν(ω). Therefore the sieve 	̂n is dense and Theorem 1 yields
the desired result. �

4. Simulation study

In this section we use simulation to compare the sieve estimator with two alternatives. To focus
on subgroup identification in the change-plane Cox model, we set Z = 1 and U = 0 in (1). This
yields the reduced change-plane Cox model, with hazard function

λ(t | X ) = exp{β1(ωTX � γ )}λ(t).
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898 S. Wei AND M. R. Kosorok

Table 1. Censoring mechanisms: the independent setting is so-called because cen-
soring is independent of X ; in the linear setting censoring is dependent on X
only through the change-plane, whereas in the nonlinear setting censoring depends

nonlinearly on X
Name Distribution

Independent C ∼ Un(0, 10)

Linear C ∼ min{Un(0, 31·97), 20}1(ωTX � γ ) + min{Un(0, 3·2), 2}1(ωTX < γ )

Nonlinear C ∼ Ex{10−1 exp(X1 + X 2
2 + log |X3|)}

Un(a, b), the uniform distribution with parameters a and b; Ex(μ), the exponential distribution with
mean μ.

Subgroup identification in this model can be viewed as a type of latent supervised learning (Wei
& Kosorok, 2013) where the right-censored survival time plays the role of a surrogate training
label.

The first alternative we consider is the double-slicing procedure proposed in Li et al. (1999),
which simultaneously slices on the censored survival time and on the censoring indicator.A critical
assumption is that the censoring time also satisfies a sliced inverse regression representation;
that is,

C = g(κT
1 X , . . . , κT

c X , ε′), (8)

where g and ε′ are unspecified and ε′ is independent of X . As Li’s double-slicing method does not
automatically produce an estimate of γ , we obtain one by applying γ̃ in (4) to the estimated ω. A
complete description of Li’s double-slicing method can be found in the Supplementary Material.

The second alternative we consider is the standard survival tree implemented by means of the
R (R Development Core Team, 2018) package rpart (Therneau & Atkinson, 2018). We use the
rpart tree to produce a direct estimate of subgroup membership, since one cannot be obtained for
the change-plane itself. This is done by thresholding the hazard rate at unity to divide the terminal
nodes of the rpart tree into two subgroups. The rpart survival tree should not be confused with the
recursively imputed survival tree. The latter is used in this paper solely for the estimation of α.
rpart was implemented using default rather than carefully tuned parameters.

The sieve estimator corresponding to Algorithm 2 is implemented as follows. The initial sieve
	0 is produced using Algorithm 1 with K = n/10. The recursively imputed survival tree is used
to estimate the conditional survival function of T ◦ and, in turn, the censoring weight α.

The simulation set-up is as follows. We draw n = 100 independent and identically distributed
observations (X , T , δ) from the reduced change-plane Cox model with parameters

β = log 10, λ(t) = 1, X ∼ N (0, Ip),

ω = (p−1/2, . . . , p−1/2︸ ︷︷ ︸
[p/2]

, −p−1/2, . . . , −p−1/2︸ ︷︷ ︸
p − [p/2]

), γ = 1/4

and one of three censoring mechanisms in Table 1. As this set-up results in exponential survival
times on either side of the change-plane with all components of ω nonzero, we call it the abundant
exponential simulation.

The average misclassification rate over 100 Monte Carlo simulations on a large independent
test set, with sample size 10 000, of the covariate X will serve as the measure of performance.
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Fig. 1. Results for abundant exponential simulation in the (a) independent, (b) linear, and (c) nonlinear settings:
misclassification rate over 100 Monte Carlo simulations for the sieve (solid), Li’s double-slicing method (dotted), and

the rpart tree (dashed), as a function of the dimension p; vertical bars indicate Monte Carlo simulation error.

Figure 1 summarizes the classification performance of the three methods as a function of the
dimension p for each of the three censoring mechanisms in Table 1.

The sieve estimator performs better than Li’s double-slicing procedure under the independent
censoring mechanism, since there is no benefit to slicing on the censoring variable. In the linear
censoring case, the two methods have similar performance, as the sieve estimator is unlikely
to provide a substantial improvement when C satisfies (8). In contrast, under the nonlinear
censoring mechanism, C cannot be written as a function of a linear combination of the covariates,
which violates (8) in Li’s double-slicing model. The sieve estimator slightly outperforms it in
this case.

Figure 1 reveals that the rpart tree has difficulty across all censoring mechanisms and dimen-
sions, probably because the geometry of the change-plane is far from that assumed in the method.
When the geometry is favourable to the rpart survival tree, it can be expected to perform substan-
tially better; see the sparse exponential simulation presented in the Supplementary Material. The
rpart approach is outperformed by both the sieve estimator and Li’s double-slicing for dimen-
sions p = 5, 10, 25 but shows its advantages when p = 50. Nonetheless, survival tree methods
for subgroup identification cannot produce subgroups that are contiguous in the covariate space,
which may hamper interpretability in certain settings.

The abundant exponential simulation in this section and the sparse exponential simulation
in the Supplementary Material both consider an idealized setting where the data are generated
according to the reduced change-plane Cox model. The sieve estimator offers generally better
classification performance than both Li’s double-slicing and the rpart tree across a range of
dimensions p and censoring mechanisms.

5. Future work

We originally envisioned the change-plane Cox model as a tool for performing subgroup
discovery, which aims to identify subgroups with heterogeneous treatment responses from a very
large pool of candidate subgroups (Lipkovich et al., 2017). Given its post hoc nature, subgroup
discovery, and more generally subgroup analysis, is controversial (Wang et al., 2007). The change-
plane Cox model may provide a principled, data-driven framework for subgroup discovery when
the outcome of interest is survival. However, as the data examples in the Supplementary Material
highlight, several issues must be addressed before the potential can be realized.
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900 S. Wei AND M. R. Kosorok

In the Supplementary Material, we apply the full change-plane Cox model to two datasets. The
significance of β is assessed by repeatedly partitioning the data into training and test sets. Each
time, only the training dataset is used to obtain an estimate of the change-plane parameters ω and
γ . The significance of the regression coefficient β is then assessed in the test set, ignoring the
fact that the change-plane was learned from the data. For both datasets, the resampling strategy
reveals that significant β coefficients in the training data may not remain so in the test set.

Distributional theory for the parameters in the change-plane Cox model, which is currently
lacking, could help identify these instances of over-optimism. For now, we recommend that any
application of the proposed technique always be accompanied by the resampling strategy, which
seems adequate for detecting whether the subgroups discovered are real or not. A deeper issue is
the challenge that data-driven approaches pose to the standard paradigm of the scientific method.
When hypotheses are generated from the data, care is needed to avoid confirmation bias.
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Appendix

Proof of Theorem 1. Let P denote the probability measure of W = (R, T , δ) under (1). Define the
empirical measure to be Pn = n−1

∑n
i=1 δWi , where δw is the measure that assigns mass 1 at w and zero

elsewhere. For a measurable function f , we write Pnf = n−1
∑n

i=1 f (Wi) and Pf = ∫
f dP. Let W̃ =

(R̃, T̃ , δ̃) be a realization from P, independent of W . Let P̃ and P̃n be defined analogously for W̃ . Next,
let Y (t) = 1(T � t) be the at-risk process. Using empirical process notation, we can write (2) and
(3) as Ln(θ) = P̃nδ̃{η(R̃, θ) − log Fn(T̃ , θ)}, where Fn(t, θ) = PnY (t) exp{η(R, θ)}, and Mn(ω, γ ) =
P̃nδ̃[η{R̃, β̂n(ω, γ ), ω, γ }−log Fn{T̃ , β̂n(ω, γ ), ω, γ }]. In the expressions for Ln and Mn, the random variables
(R̃, T̃ , δ̃) in the first term on the right-hand side have their expectations taken with respect to P̃n. In the
second term on the right-hand side, two successive integrations take place: first the expectation of (R, T , δ)
in Fn with respect to Pn, and then the expectation of T̃ with respect to P̃n. Let F0(t, θ) = PY (t) exp{η(R, θ)}.
The corresponding population versions of Ln and Mn are

Lp(θ) = P̃δ̃{η(R̃, θ) − log F0(T̃ , θ)} (A1)

and

M (ω, γ ) = P̃δ̃
[
η{R̃, β(ω, γ ), ω, γ } − log F0{T̃ , β(ω, γ ), ω, γ }]
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where β(ω, γ ) = arg maxβ Lp(β, ω, γ ). The subscript in Lp refers to the fact that this is a partial likelihood.
Later we will use L to denote the full likelihood.

Following the argmax theorem in M-estimation theory (Kosorok, 2008, Theorem 14.1), the following
conditions are sufficient to obtain consistency: (i) the sequence {ω̂n, γ̃ (ω̂n)} is uniformly tight; (ii) the map
(ω, γ ) 
→ M (ω, γ ) is upper semicontinuous and (iii) has a unique maximum at (ω0, γ0); (iv) Mn converges
to M uniformly over every compact set K in �2; and (v) the sieve estimator nearly maximizes the objective
function, i.e., Mn{ω̂n, γ̃ (ω̂n)} � Mn(ω0, γ0) − oP(1). We now check these conditions.

The first condition of the argmax theorem holds since ‖ω̂n‖ = 1 and γ̃ (ω̂n) must lie in the interval [a, b].
For condition (ii), we will show that M (ω, γ ) is continuous. Let (ωn, γn) be a sequence converging to (ω, γ )

and βn a sequence converging to β. Then θn = (βn, ωn, γn) is a sequence converging to θ = (β, ω, γ ). We
first show that P̃δ̃η(R̃, θn) → P̃δ̃η(R̃, θ) if θn → θ . This can be seen to hold componentwise for η in light
of Conditions 3 and 5. We will show it explicitly for one of the components. Since X is continuous by
Condition 3, we have∣∣Pδ1(ωT

n X � γn) − δ1(ωTX � γ )
∣∣

� Pδ
∣∣1(ωT

n X � γn) − 1(ωTX � γ )
∣∣ 1

(|ωT
n X − γn − ωTX − γ0| � ε

)
+ Pδ

∣∣1(ωT
n X � γn) − 1(ωTX � γ )

∣∣ 1
(|ωT

n X − γn − ωTX − γ0| > ε
) → 0.

If β(ωn, γn) → β(ω, γ ), then F0{T̃ , β(ωn, γn), ωn, γn} → F0{T̃ , β(ω, γ ), ω, γ } almost surely. Note that
F0{T̃ , β(ωn, γn), ωn, γn} is bounded by an integrable function under Conditions 4 and 5. This gives
P̃δ̃ log F0{T̃ , β(ωn, γn), ωn, γn} → P̃δ̃ log F0{T̃ , β(ω, γ ), ω, γ }. Hence, to show that M (ω, γ ) is continu-
ous, it suffices to establish continuity of β(ω, γ ). To see this, first note that Lp(θ) is continuous by the
arguments above. Next, we establish that Lp(θ) has a unique maximum in β for every pair (ω, γ ). Consider

∂

∂β
Lp(θ) = P̃δ̃

[
∂

∂β
η(R̃, θ) − PY (T̃ ) exp{η(R, θ)} ∂

∂β
η(R, θ)

PY (T̃ ) exp{η(R, θ)}

]
,

where

∂

∂β
η(R, θ) = {Z , 1(ωTX � γ ), Z1(ωTX � γ ), U }.

A straightforward calculation shows that the second partial derivative with respect to β is strictly negative
definite. Thus β(ωn, γn) → β(ω, γ ).

We now verify condition (iii). Under (1), write the integrated hazard function of T ◦ given X as
exp{η(R, θ)}�(t), where � is continuous and monotone increasing with �(0) = 0. The joint likeli-
hood in θ and the nuisance parameter � for a single observation (R, T , δ) is proportional to L(θ , �) ≡
{b(R, θ)λ(T )}δ exp{−b(R, θ)�(T )} where b(R, θ) = exp{η(R, θ)}. Next, we check (iii) by showing that
the profile of L over � equals Lp(θ) in (A1) up to a constant, which will then enable us to use the standard
Kullback–Leibler argument for identifiability to show that θ0 is a unique maximizer of (A4) and hence that
(ω0, γ0) is a unique maximizer of M (ω, γ ).

In L, replace λ(t) with λs(t) = {1 + sf (t)}λ(t), where f is for now an unspecified bounded function,
and take the Gateaux derivative of L with respect to s at s = 0. Letting N (t) = 1(T � t, δ = 1) be the
counting process and using the fact that P dN (t) = PY (t)b(R, θ0) d�0(t), we obtain that the expectation
of the resulting derivative is∫ τ

0
f (t)P{Y (t)b(R, θ0)} d�0(t) −

∫ τ

0
f (t)P{Y (t)b(R, θ)} d�(t). (A2)

Now, if we replace � in (A2) with �s(t) = ∫ t
0 {1 + sg(u)} d�(u) for some other function g and

differentiate again with respect to s at s = 0, we obtain that the second Gateaux derivative is
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− ∫ τ

0 f (t)g(t)P{Y (t)b(R, θ)} d�(t), which is strictly negative when f = g, implying that for fixed θ ,
any � which is a zero of (A2) for a rich enough collection of functions f is a maximizer over all �

for fixed θ . Insert f (t) = 1(t � u) into (A2), and allow u to range over [0, τ ]; then we obtain that the
profile maximizer of L over � satisfies

∫ u
0 P{Y (t)b(R, θ0)} d�0(t) − ∫ u

0 P{Y (t)b(R, θ)} d�(t) = 0 for all
u ∈ [0, τ ]. Hence

d�(t)

d�0(t)
= P{Y (t)b(R, θ0)}

P{Y (t)b(R, θ)} . (A3)

Inserting (A3) back into L and removing additive terms which are constants with respect to θ , we obtain
that the profile of L over the parameter � is

P

(∫ τ

0
log b(R, θ) dN (t) −

∫ τ

0
log[P{Y (t)b(R, θ)}] dN (t)

)
, (A4)

which equals Lp(θ) in (A1). Now let θ1 maximize (A4). Then, as (A4) is the profile of L over the parameter
�, there exists a �1 such that the joint parameter (θ1, �1) maximizes L. By the property of the Kullback–
Leibler discrepancy and model identifiability, this implies that θ1 = θ0. Hence (A4) has a unique maximizer
at θ0 and we have shown that M (ω, γ ) is uniquely maximized at (ω0, γ0).

To verify condition (iv) of the argmax theorem, fix a compact set K = K1 × K2 ⊂ �, where K1 is
compact in �1 and K2 is compact in �2. Let mθ (v, t, δ) = δ{η(v, θ) − log Fn(t, θ)} and consider the class
of functions {mθ (v, t, δ) : θ ∈ K}. First we consider the component {η(v, θ) : θ ∈ K}. The classes {βi} for
i = 1, . . . , 4 are each Donsker, as are the classes {Z} and {U }. The class {1(ωTx � γ ) : (ω, γ ) ∈ K2} is
also Donsker by the example in Kosorok (2008, § 4.1.1). Since products of bounded Donsker classes are
Donsker, {η(v, θ) : θ ∈ K} is Donsker. Next, we examine the component {log Fn(t, θ) : t ∈ [0, τ ], θ ∈ K}.
The class [exp{β21(ωTx � γ )}] is Donsker, since exponentiation is Lipschitz continuous on compact sets.
The at-risk process Y (t) is Donsker by Lemma 4.1 in Kosorok (2008). Thus {log Fn(t, θ)} is Donsker.
Repeating arguments for sums of Donsker classes and products of bounded Donsker classes shows that
{mθ (v, t, δ) : θ ∈ K} is a Donsker class of functions and therefore also a Glivenko–Cantelli class of
functions.

Now let mω,γ (v, t, δ) = δ[η{v, β̂n(ω, γ ), ω, γ }−log Fn(t, β̂n(ω, γ ), ω, γ )]; then we can write Mn(ω, γ ) =
P̃nmω,γ (R̃, T̃ , δ̃). Since the estimated log ratio hazard β̂n(ω, γ ) lies in a compact set in �1 for all (ω, γ ) ∈
K2, the class {mω,γ (v, t, δ) : (ω, γ ) ∈ K2} is contained in a Donsker class, which implies that it is a
Glivenko–Cantelli class. Thus

sup
(ω,γ )∈K2

∣∣Mn(ω, γ ) − P̃mω,γ (R̃, T̃ , δ̃)
∣∣ → 0

in probability as n → ∞. Next we show that P̃mω,γ (R̃, T̃ , δ̃) converges uniformly to M (ω, γ ). The uni-
form convergence of β̂n(ω, γ ) to β(ω, γ ) can be shown by adapting the arguments of Theorem 1 in
Pons (2003). We then show that Fn{t, β̂n(ω, γ ), ω, γ } → F0{t, β(ω, γ ), ω, γ } uniformly over (ω, γ ) ∈
K2. We may write Fn{t, β̂n(ω, γ ), ω, γ } = PnY (t) exp[η{R, β̂n(ω, γ ), ω, γ }] and F0{t, β(ω, γ ), ω, γ } =
PY (t) exp[η{R, β(ω, γ ), ω, γ }]. We have already argued for the Donsker property of the classes {1(t � r) :
r ∈ [0, τ ]} and {exp{η(v, θ)} : θ ∈ K}. Thus we conclude that {1(t � r) exp{η(v, θ)} : r ∈ [0, τ ], θ ∈ K} is
Donsker and hence Glivenko–Cantelli. Therefore, Mn(ω, γ ) converges uniformly to M (ω, γ ) over compact
K2 ⊂ �2.

Finally, we check condition (v) of the argmax theorem. If the sieve 	n is dense, there is a sequence
{ωn, γ̃ (ωn)} ∈ 	n × [a, b] that converges to (ω0, γ0). By definition, Mn{ω̂n, γ̃ (ω̂n)} � Mn{ωn, γ̃ (ωn)}. By
the continuity of M (ω, γ ), Mn(ω0, γ0)−Mn{ωn, γ̃ (ωn)} = oP(1) and hence Mn{ω̂n, γ̃ (ω̂n)} � Mn(ω0, γ0)−
oP(1). All the conditions of the argmax theorem are met, and so consistency follows. �
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