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Latent Supervised Learning
Susan WEI and Michael R. KOSOROK

This article introduces a new machine learning task, called latent supervised learning, where the goal is to learn a binary classifier from
continuous training labels that serve as surrogates for the unobserved class labels. We investigate a specific model where the surrogate
variable arises from a two-component Gaussian mixture with unknown means and variances, and the component membership is determined
by a hyperplane in the covariate space. The estimation of the separating hyperplane and the Gaussian mixture parameters forms what shall
be referred to as the change-line classification problem. We propose a data-driven sieve maximum likelihood estimator for the hyperplane,
which in turn can be used to estimate the parameters of the Gaussian mixture. The estimator is shown to be consistent. Simulations as well
as empirical data show the estimator has high classification accuracy.

KEY WORDS: Classification and clustering; Glivenko–Cantelli classes; Sieve maximum likelihood estimation; Sliced inverse regression;
Statistical learning.

1. INTRODUCTION

This article introduces a new machine learning task, latent
supervised learning. The goal is to learn a binary classifier from
continuous training labels. The term latent describes the hidden
underlying relationship between the surrogate and the unob-
served class label. This latency structure manifests in many
real-world applications. Take for instance the world of clini-
cal trials, where it is common to show a direct clinical ben-
efit to a surrogate marker rather than a real clinical endpoint
(Fleming 2005). An example of a surrogate marker is a contin-
uous measurement such as blood pressure. The corresponding
real clinical endpoint might be a binary indicator of death. Us-
ing a surrogate variable to guide classification, latent supervised
learning directly targets the setting where clearly labeled train-
ing data are unavailable.

In this way, latent supervised learning bridges the gap be-
tween unsupervised and supervised learning. In the former, data
are unlabeled and the goal is simply to discover useful classes
of items. This is also known as clustering, see Jain, Murty,
and Flynn (1999) for a review. On the other hand, supervised
learning, see Hastie, Tibshirani, and Friedman (2003) for an
overview, seeks to derive a function from labeled training data.
Such a function is called a classifier if the label is discrete or
a regression function if the label is continuous. There are in-
stances, however, when carefully trained data are difficult or too
costly to obtain. In such cases, supervised learning is infeasible
and latent supervised learning provides a preferable alterna-
tive to clustering if a clearly generalizable classification rule is
desired.

This article studies a specific problem in latent supervised
learning, which shall be referred to as the change-line classi-
fication problem. The surrogate variable arises from a Gaus-
sian mixture distribution with unknown parameters where the
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latent structure between the surrogate and the component class
label is determined by an unknown hyperplane in the covari-
ate space. We propose a data-driven sieve maximum likelihood
estimator (MLE) to estimate the hyperplane. Importantly, the
classification of future objects solely depends on the separating
hyperplane. This makes the method generalizable and advan-
tageous in situations where the surrogate variable may not be
available for future data.

The estimator is shown to be consistent. Its accuracy is
demonstrated on simulated data. Three health-related datasets
are used to illustrate its applicability. Two of the datasets are
accompanied by binary outcome variables. For these, the sub-
groups estimated by the method will be compared to the ones
given by the binary outcome variable. The data-driven sieve esti-
mator is able to achieve, without using the binary training labels,
classification accuracy comparable to that of logistic regression,
a fully supervised procedure. For the third dataset where there
is no binary outcome variable available, an interpretation of the
subgroups discovered is offered.

The article is organized as follows. In the next section, the
model is formally defined. In Section 3, related work is dis-
cussed. In Section 4, a variety of existing “off-the-shelf” sta-
tistical methods are examined and the caveats of using each
is addressed. Section 5 presents the methodology. The consis-
tency of the estimator is established in Section 6. The issue of
model checking and diagnostics is discussed in Section 7. Sim-
ulations in Section 8 compare the method to other competitors.
Applications to real-world datasets are presented in Section 9.
The article ends with a discussion in Section 10. Some addi-
tional supporting material including proofs of results and data
preprocessing steps are given in the Appendix.

2. THE MODEL

The setup of the problem is as follows. Let the covariate X ∈
Rd be related to the surrogate variable Y ∈ R in the following
manner:

Y = μ1,01
{
ωT

0 X − γ0 ≥ 0
} + μ2,01

{
ωT

0 X − γ0 < 0
} + ε,

(1)
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where the means μ1,0, μ2,0 ∈ R are unknown, and

ε ∼ N
(
0, σ 2

1,01
{
ωT

0 X − γ0 ≥ 0
} + σ 2

2,01
{
ωT

0 X − γ0 < 0
})

,

where the variances σ 2
1,0, σ

2
2,0 ∈ R+ are also unknown. The re-

lationship between the means and variances is allowed to be
arbitrary as long as the equations μ1,0 = μ2,0 and σ 2

1,0 = σ 2
2,0

are not simultaneously true. The sample (X1, Y1), . . . , (Xn, Yn)
is observed iid from Model (1). The estimation of ω0 and γ0 is
of primary interest.

3. RELATED WORK

The model considered here was first described in Kang’s
Ph.D. thesis, see Kang (2011). Kang proposed an estimator for
the special case p = 2. The procedure involved first enumerat-
ing all linear hyperplanes in R2 that separate the sample of data
x1, . . . , xn into two groups. Then the hyperplane that maximizes
the likelihood is taken to be the estimate. A procedure enumer-
ating all hyperplanes splitting the data for R3 or higher does
not seem to be generalizable from the procedure for R2. Thus,
an extension to R3 or beyond based on this technique appears
difficult.

It was also Kang who coined the term “change-line classifi-
cation.” This is likely a reference to the well-studied topic of
change-point problems, see Carlstein, Müller, and Siegmund
(1994) for an overview. The relationship to the present model
can be seen as follows. In its simplest form, the change-point
model assumes the following structure:

Y = α01X≤ζ0 + β01X>ζ0 + ε,

where ε is a normally distributed error term. The parameter
of interest is ζ0, the change-point. Model (1) encompasses this
basic change-point model; set μ1,0 = α0, μ2,0 = β0, σ 2

1,0 = σ 2
2,0,

ω0 = 1 and γ0 = ζ0 to see this. Model (1) is a generalization of
the basic change-point model in two ways: (a) no restrictions
are placed on the relationship between σ 2

1,0 and σ 2
2,0 and (b) the

search for a change-point is generalized to a change-hyperplane.
These generalizations in turn require a whole new set of tools.

4. OFF-THE-SHELF SOLUTIONS

This section provides motivation for the necessity of a new
methodology to solve the change-line classification problem.
This is addressed by first considering several “off-the-shelf”
statistical methods. Discussion of the caveats of the application
of each to the change-line classification problem follows.

4.1 Linear Regression

A simple regression of Y on X could be used for the change-
line classification problem. However, under Model (1),

E(Y |X) = μ1,01{ωT X − γ ≥ 0} − μ2,01{ωT X − γ < 0}.
This is not linear in X and thus linear regression is unlikely to
perform well.

4.2 SIR

The more sophisticated procedure sliced inverse regression
(SIR) assumes that there exists a lower-dimensional projection

of the covariates X that explains all that needs to be known
about the surrogate variable Y (Li 1991). Formally, the model
stipulates

Y = f (β1X,β2X, . . . , βkX, ε),

where the β’s are unknown and f is an arbitrary unknown
function.

The implementation of SIR will now be described in detail
as it will play a key role in the proposed methodology. For
simplicity, assume the covariate X has been standardized to
have mean zero and identity covariance. In the first step of SIR,
the range of Y is partitioned into H (not necessarily equal) slices
{I1, . . . , IH }. Let m̂h be the sample mean of the covariates in
the hth slice, that is,

m̂h =
∑n

i=1 Xi1{Yi ∈ Ih}∑n
i=1 1{Yi ∈ Ih} .

The kth largest eigenvector (eigenvector corresponding to the
kth largest eigenvalue) of the weighted covariance matrix∑H

h=1 |Ih|m̂hm̂
′
h is taken to be an estimate of βk . To estimate

ω0 in the change-line estimation problem, set k = 1 and apply
SIR. It will seen later in Section 5 that a direct application of SIR
under Model (1) is often sensitive to noise in the data and can
have poor performance even when the sample size is moderately
large.

4.3 EM

The methods described thus far focus on modeling the rela-
tionship between the covariate X and the surrogate variable Y .
Also each method produces an estimate of ω0 only. An entirely
different line of approach is to first estimate the binary labels
1{ωT

0 Xi − γ0 ≥ 0} for each i = 1, . . . , n and then apply a stan-
dard binary linear classification method, such as the support
vector machine (SVM), to estimate ω0 and γ0. This approach
requires that the binary labels first be estimated with a high
degree of accuracy.

One possible way to estimate these binary labels is the
expectation-maximization (EM) algorithm. The data arising
from Model (1) is a Gaussian mixture with unknown param-
eters. The EM algorithm more directly targets the estimation of
the parameters μ1,0, μ2,0, σ

2
1,0, σ

2
2,0 but can do a poor job of es-

timating the actual class membership labels 1{ωT
0 xi − γ0 ≥ 0}.

4.4 Clustering

Another possibility is to use clustering methods to estimate
the binary labels. The cluster membership can then be used as
training labels in a binary linear classifier such as SVM. A basic
clustering algorithm such as k-means clustering with k = 2 can
be performed on the Y space. This, however, entirely ignores
the information in the covariate X and the resulting clusters
may not be sensible when viewed in the covariate space. An-
other approach, clustering on the (X, Y ) space to estimate the
binary labels, has the drawback that the dimension of the covari-
ate space is usually higher than the one-dimensional surrogate
variable Y , but a standard clustering algorithm will weigh them
equally.
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In Section 8, simulations are performed to compare the pro-
posed methodology to each of the methods above. The results
suggest the new methodology is generally more accurate for the
change-line classification problem than any of these “off-the-
shelf” methods.

5. METHODOLOGY

The estimation of ω0 in Model (1) uses a sieve maximum
likelihood approach. A sieve is a sequence of approximating
spaces that grows dense as the sample size increases (Grenander
1981). Maximization is carried out over these approximating
spaces rather than the full parameter space. Traditionally, the
method of sieves has been used in nonparametric maximum
likelihood estimation. There, sieves are either (a) deterministic
or (b) random but not data dependent. See Geman and Hwang
(1982) for examples of the former and Shen, Shi, and Wong
(1999) for the latter.

The proposed sieve estimation procedure is unique in that the
sieve is constructed using the observed data. The construction
begins with a data-driven sieve that is based on the information
in the covariate X. Next the sieve is “boosted” by incorporating
information from the surrogate variable Y .

5.1 The Likelihood

The expression of the likelihood function is described here.
Let θ (ω, γ ) be the collected nuisance parameters

θ (ω, γ ) := (
μ1(ω, γ ), μ2(ω, γ ), σ 2

1 (ω, γ ), σ 2
2 (ω, γ )

)
,

where

μ1(ω, γ ) := E(Y |ωT X − γ ≥ 0) and

μ2(ω, γ ) := E(Y |ωT X − γ < 0)

and

σ 2
1 (ω, γ ) := var(Y |ωT X − γ ≥ 0) and

σ 2
2 (ω, γ ) := var(Y |ωT X − γ < 0).

The log-likelihood of the data under Model (1) as a function of
(ω, γ ) is given by

Ln(ω, γ, θ (ω, γ ))

= −1

2

n∑
i=1

[
log(2πσ 2(xi, ω, γ )) + (yi − μ(xi, ω, γ ))2

σ 2(xi, ω, γ )

]
,

(2)

where

μ(x, ω, γ ) = (μ1(ω, γ ) − μ2(ω, γ ))1{ωT x − γ ≥ 0}
+ μ2(ω, γ ) (3)

and

σ 2(x, ω, γ ) = (
σ 2

1 (ω, γ ) − σ 2
2 (ω, γ )

)
1{ωT x − γ ≥ 0}

+ σ 2
2 (ω, γ ). (4)

A natural estimate for θ (ω, γ ) is

θ̂n(ω, γ ) := (
μ̂1(ω, γ ), μ̂2(ω, γ ), σ̂ 2

1 (ω, γ ), σ̂ 2
2 (ω, γ )

)
, (5)

where the estimated means are given by

μ̂1(ω, γ ) =
∑n

i=1 yi1{ωT xi − γ ≥ 0}∑n
i=1 1{ωT xi − γ ≥ 0} and

μ̂2(ω, γ ) =
∑n

i=1 yi1{ωT xi − γ < 0}∑n
i=1 1{ωT xi − γ < 0}

and the estimated variances are given by

σ̂ 2
1 (ω, γ ) =

∑
i(yi − μ̂1(ω, γ ))21{ωT xi − γ ≥ 0}∑

i 1{ωT xi − γ ≥ 0}
and

σ̂ 2
2 (ω, γ ) =

∑
i(yi − μ̂2(ω, γ ))21{ωT xi − γ < 0}∑

i 1{ωT xi − γ < 0} .

Let Sp denote the unit sphere in Rp. The likelihood Ln is
maximized over a sieve �̂n ⊂ Sp using the plug-in estimate
θ̂n(ω, γ ). Let �̂n(ω) ⊂ R be the set of γ ’s such that θ̂n(ω, γ ) is
well defined. The sieved estimator is(

ω̂s
n, γ̂

s
n

)
:= min arg max

ω∈�̂n,γ∈�̂n(ω)

Ln(ω, γ, θ̂n(ω, γ )), (6)

where min arg max denote the smallest arg max. This is neces-
sary since there is a whole interval of γ ’s that maximize the
likelihood. The next two sections describe the construction of
the sieve �̂n.

5.2 The Simple Sieve

The simple sieve is based on the mean difference (MD) dis-
crimination rule applied to the covariates x. The MD, also known
as the nearest centroid method [see Chapter 1 of Scholkopf and
Smola (2001)], is a forerunner to the shrunken nearest centroid
method of Tibshirani et al. (2002). It is based on the class sam-
ple mean vectors, denoted by x̄+ and x̄−. A new data vector
is assigned to the positive (negative) class if it is closer to x̄+

(x̄−). Thus the MD discrimination method results in a separat-
ing hyperplane with normal vector x̄+ − x̄−. The simple sieve
consists of MD directions formed in the following manner:

1. Partition the covariate space X into K regions. Let Sk ⊂
{1, . . . , n} be the index set for region k.

2. Let Pk denote the collection of partitions of the set Sk into
two parts. For P ∈ Pk , let P1 and P2 be the parts of the
partition, that is, P1 ∪ P2 = Sk and P1 ∩ P2 = ∅.

3. For each P ∈ ⋃
k Pk , calculate the MD direction

ωMD(P )—the vector connecting the centroids of the two
classes {Xi : i ∈ P1} and {Xi : i ∈ P2},

ωMD(P ) = X̄P1 − X̄P2

||X̄P1 − X̄P2 ||
,

where X̄P1 and X̄P2 are the sample means of X’s in P1 and
P2, respectively.

K-means clustering can be used for the first step to obtain a
partition of the covariate space. If K-means returns clusters that
are very large, sample a manageable portion of the cluster. The
parameter K should be chosen to ensure the cardinality of the
sieve is not too big. Setting K to be roughly n/10 works well in
practice. This choice results in the sieve having approximately∑K

k=1 2|Sk | = n210/10 elements, which grows linearly in n and
is quite manageable computationally.
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5.3 Incorporating the Surrogate Variable

To incorporate the information from the surrogate variable Y
to boost the simple sieve, the SIR procedure is applied to the
bivariate (Y, 1{ωT X − γ ≥ 0}); henceforth this will be referred
to as the modified SIR. First, slice the range of Y into H (not
necessarily equal) slices {I1, . . . , IH }. Next, standardize X to
have mean zero and unit covariance: X̃ = 
̂

−1/2
xx (Xi − X̄), for

i = 1, . . . , n, where X̄ and 
̂xx are the sample mean and sam-
ple covariance matrix of X, respectively. Let m̂h,1(ω, γ ) be the
average of the X̃’s in the hth slice that are above the hyperplane
ωT x − γ ≥ 0,

m̂h,1(ω, γ ) =
∑n

i=1 X̃i1{Yi ∈ Ih}1{ωT Xi − γ ≥ 0}∑n
i=1 1{Yi ∈ Ih}1{ωT Xi − γ ≥ 0}

and analogously for below the hyperplane

m̂h,2(ω, γ ) =
∑n

i=1 X̃i1{Yi ∈ Ih}1{ωT Xi − γ < 0}∑n
i=1 1{Yi ∈ Ih}1{ωT Xi − γ < 0} .

The quantities m̂h,1(ω, γ ) and m̂h,2(ω, γ ) are sample versions of
E(X̃|Y ∈ Ih, ω

T X − γ ≥ 0) and E(X̃|Y ∈ Ih, ω
T X − γ < 0),

respectively. The theoretical expectations will show variation
along the direction ω0 under Model (1). The direction along
which the points m̂h,1 and m̂h,2 exhibit the most variation is
found using a weighted principal components analysis (PCA).
The d × d weighted covariance matrix, expressed in terms of ω

and γ , is given by

V̂n(ω, γ ) =
H∑

h=1

(|Ih,1(ω, γ )|m̂h,1(ω, γ )m̂h,1(ω, γ )′

+ |Ih,2(ω, γ )|m̂h,2(ω, γ )m̂h,2(ω, γ )′), (7)

where

|Ih,1(ω, γ )| =
n∑

i=1

1{Yi ∈ Ih}1{ωT Xi − γ ≥ 0}

and

|Ih,2(ω, γ )| =
n∑

i=1

1{Yi ∈ Ih}1{ωT Xi − γ < 0}.

The weights in the PCA are chosen so that V (ω, γ ), the popu-
lation version of V̂n(ω, γ ), has ω0 as its largest eigenvector.

Let ν̂n(ω, γ ) be the largest eigenvector of V̂n(ω, γ ). It is the
direction along which m̂h,1(ω, γ ) and m̂h,2(ω, γ ) show maximal
variation. The boosted sieve �̂n is a result of applying ν̂n to the
simple sieve of MD directions:

�̂n :=
{

ν̂n(ωMD(P ), γ MD(P ))
̂−1/2
xx : P ∈

K⋃
k=1

Pk

}
. (8)

The term γ MD(P ) is the intercept that maximizes the likelihood
given ωMD(P ) and the term 
̂

−1/2
xx is necessary to transform the

estimate back to the original scale.
Experience indicates the proposed method is not sensitive to

the choice of H, the number of slices, and setting H = n/10
works well in most applications.

5.4 Illustrative Example

The modified SIR procedure described in the previous section
is very similar to the original SIR procedure. The main differ-

ence is that the subgroup structure is taken into account in the
former. Note that in SIR, all terms X̃iX̃

′
j are included in the co-

variance matrix, whereas in the modification, only terms where
Xi and Xj lie on the same side of the hyperplane ωT X − γ = 0
are included. This additional restriction helps reduce the noise
that can arise from aggregating across subgroups. To illustrate
the noise issue, the performance of SIR is examined by studying
a simple toy example. Set the parameters in Model (1) to the
following:

n = 100, d = 3, ω0 =
(

1√
2
,− 1√

2
, 0

)
, γ0 = 1

4
,(

μ1,0, σ
2
1,0

) = (0, 4),
(
μ2,0, σ

2
2,0

) = (4, 1),

X ∼ N (0, I3).

Note that the third component of ω0 is 0 and thus the third dimen-
sion contains no information on the subgroup structure. Despite
the overlap between the distributions N (0, 4) and N (4, 1), the
surrogate variable clearly has valuable information for guiding
classification.

The number of slices H is set to n/10 in both the modified and
the original SIR procedure. The top row in Figure 1 examines
various aspects of the original SIR estimator for this toy dataset.
Figure 1(a) plots the projection of x onto the true direction ω0

against the surrogate variable y. The circle and plus symbols
correspond to the true subgroup membership. The asterisks in
Figure 1(a) represent the sample means m̂h within each slice
whose boundaries are delineated by the horizontal dashed lines.
The slice means exhibit variation along the ω0 direction moving
across the slices. Figure 1(b) shows the positions of the sample
means m̂h in the first two coordinates. The SIR estimate is
compared to the true ω0 direction. The distance between them
in the first two coordinates is 0.0545. Figure 1(c) shows the
distribution of the slice means in the third coordinate. The slice
means are not centered at zero despite ω0 being zero in the third
coordinate. This suggests the SIR estimate will be inaccurate
in the third coordinate. Indeed, the distance between the SIR
estimate and ω0 in the third coordinate is 0.2718, much higher
than in the first two coordinates combined. Thus, although SIR
is accurate in the first two coordinates, it is inaccurate in the
third coordinate.

Next the performance of the modified SIR procedure on this
toy example is examined. The second row in Figure 1 is as in
the top row except the asterisks now represent the sample means
m̂h,1(ω0, γ0) and m̂h,2(ω0, γ0) for h = 1, . . . , H . The distance
between ν̂n(ω0, γ0) and ω0 is 0.0888 in the first two coordinates,
which is larger than the distance between the SIR estimate and
ω0. However, the accuracy in the third coordinate is a signif-
icant improvement over SIR. Figure 1(f) shows that the slice
means m̂h,1(ω0, γ0) and m̂h,2(ω0, γ0) in the third coordinate are
centered at zero. The distance between ν̂n(ω0, γ0) and ω0 in the
third coordinate is found to be 0.11. Thus, overall across all three
dimensions, ν̂n(ω0, γ0) is more accurate than the SIR estimate.

6. CONSISTENCY

In this section, M-estimation theory is used to establish the
consistency of the data-driven sieved MLE (ω̂s

n, γ̂
s
n ). Let P de-

note the probability measure of Z = (X, Y ) under Model (1).
Define the empirical measure to be Pn = n−1 ∑n

i=1 δZi
where

δz is the measure that assigns mass 1 at z and zero elsewhere.
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Figure 1. Toy example illustrating the differences between SIR and the proposed method of incorporating the surrogate variable described in
Section 5.3. The estimate ν̂n(ω0, γ0) is less accurate than the SIR estimate in the first two dimensions but a better overall estimate across all three
dimensions. (a) SIR slice means, (b) SIR in first two coordinates, (c) SIR in third coordinate, (d) Modified SIR slice means, (e) Modified SIR in
first two coordinates, (f) Modified SIR in third coordinate. The online version of this figure is in color.

For a measurable function f , let Pnf = n−1 ∑n
i=1 f (Zi) be the

expectation of f under the measure Pn and Pf = ∫
f dP the

expectation under P. Using the empirical processes notation de-
scribed above, the likelihood expression in Equation (2) can be
rewritten as

Mn(ω, γ, θ (ω, γ )) = Pnmω,γ,θ(ω,γ ),

where

mω,γ,θ(ω,γ )(x, y) = − log(σ 2(x, ω, γ )) − (y − μ(x, ω, γ ))2

σ 2(x, ω, γ )
.

(9)

Note that the constant 1/2 and the log 2π terms have been
dropped as they do not affect the maximization. The following
assumptions are needed:

(A1) The intercept γ0 is known to lie in a bounded interval
[a, b].

(A2) The univariate random variable ωT
0 X has a strictly

bounded and positive density f over [a, b] with
P (ωT

0 X < a) > 0 and P (ωT
0 X > b) > 0.

(A3) μ1,0 = μ2,0 and σ 2
1,0 = σ 2

2,0 are not simultaneously true.

(A4) The surrogate variable Y has finite first and second
moments, that is, EY < ∞ and EY 2 < ∞.

(A5) For any b ∈ Rp, the conditional expectation
E(bT X|ωT

0 X) is linear in ωT
0 X.

(A6) The covariate X has a continuous distribution.

The interval [a, b] in (A1) may be estimated from the data by
first calculating the direction of maximal variation of the sam-
ple covariates X and next considering the range of the resulting
projections. The second assumption is satisfied for most con-
tinuous distributions of X whose support includes [a, b]. The
third assumption ensures that the Gaussian mixture parame-
ters are well defined. Assumption A4 is reasonable for most
surrogate variables in practice. A5 is a key assumption in Li
(1991) and is satisfied when the distribution of X is Gaussian
or, more generally, elliptically symmetric. Finally, Assumption
A6 is necessary to guarantee the semicontinuity of the function
M(ω, γ, θ (ω, γ ). Certain of these assumptions are for mathe-
matical convenience and may be stronger than necessary. For
instance, the last assumption requiring the covariate X to have
a continuous distribution is quite stringent and may be relaxed
at the cost of more complicated proofs. The proposed method is
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later applied to real datasets in Section 9 that contain categorical
covariates and the method is seen to perform well despite this.

Theorem 1. Let (X1, Y1), . . . , (Xn, Yn) be iid from Model
(1). Under (A1)–(A6), the data-driven sieved MLE defined in (6)
using the boosted sieve in (8) is consistent for the true parameters
(ω0, γ0).

Proof of Theorem 1. Following theorem 14.1 (Argmax The-
orem) in Kosorok (2008), the following will be established to
show consistency: (a) the sequence (ω̂s

n, γ̂
s
n ) is uniformly tight;

(b) the map (ω, γ ) 
→ M(ω, γ, θ (ω, γ )) is upper semicontinu-
ous with a unique maximum at (ω0, γ0); (c) uniform convergence
of Mn to M over compact subsets K of Sp × [a, b], that is,

sup
(ω,γ )∈K

|Mn(ω, γ, θ (ω, γ )) − M(ω, γ, θ (ω, γ ))| → 0

in probability; and (d) the estimator “nearly” maximizes the
objective function, that is, ω̂s

n and γ̂ s
n satisfy

Mn

(
ω̂s

n, γ̂
s
n , θ

(
ω̂s

n, γ̂
s
n

)) ≥ Mn(ω0, γ0, θ (ω0, γ0)) − oP (1).

The first condition is easily seen to hold. Since ω̂s
n is a unit

vector in Rp, it is easy to see ||ω̂s
n|| = OP (1). The intercept

estimate γ̂ s
n lies in the interval [a, b] and is thus uniformly tight.

To check semicontinuity of M(ω, γ, θ (ω, γ )), the conditional
expectation of mω,γ,θ(ω,γ ) given X is first examined. Taking the
expectation with respect to the randomness in Y gives

P (mω,γ,θ(ω,γ )(X, Y )|X)

= − log(σ 2(X,ω, γ )) − P {(Y − μ(X,ω, γ ))2|X}
σ 2(X,ω, γ )

= − log(σ 2(X,ω, γ ))

− P {(Y − μ(X,ω, γ ))21{ωT X − γ ≥ 0}|X}
σ 2(X,ω, γ )

− P {(Y − μ(X,ω, γ ))21{ωT X − γ < 0}|X}
σ 2(X,ω, γ )

= − log(σ 2(X,ω, γ ))

− P {(Y − μ1(ω, γ ))21{ωT X − γ ≥ 0}|X}
σ 2(X,ω, γ )

− P {(Y − μ2(ω, γ ))21{ωT X − γ < 0}|X}
σ 2(X,ω, γ )

= − log(σ 2(X,ω, γ ))

− P {(Y −μ1,0+μ1,0 − μ1(ω, γ ))21{ωT X − γ ≥ 0}|X}
σ 2(X,ω, γ )

− P {(Y −μ2,0+μ2,0 − μ2(ω, γ ))21{ωT X − γ < 0}|X}
σ 2(X,ω, γ )

= − log(σ 2(X,ω, γ ))

−
[
σ 2

1,0 + (μ1,0 − μ1(ω, γ ))2
]

1{ωT X − γ ≥ 0}
σ 2(X,ω, γ )

−
[
σ 2

2,0 + (μ2,0 − μ2(ω, γ ))2
]

1{ωT X − γ < 0}
σ 2(X,ω, γ )

.

Taking the expectation on both sides (this time with respect
to the randomness in X) gives

M(ω, γ, θ (ω, γ ))

= − log
(
σ 2

1 (ω, γ )
)
P 1{ωT X − γ ≥ 0}

− log
(
σ 2

2 (ω, γ )
)
P 1{ωT X − γ < 0}

− 〈 [
σ 2

1,0 + (μ1,0 − μ1(ω, γ ))2
]
P 1{ωT X − γ ≥ 0}〉/〈

σ 2
1 (ω, γ )P 1{ωT X − γ ≥ 0}

+ σ 2
2 (ω, γ )P 1{ωT X − γ < 0}〉

− 〈 [
σ 2

2,0 + (μ2,0 − μ2(ω, γ ))2
]
P 1{ωT X − γ < 0}〉/〈

σ 2
1 (ω, γ )P 1{ωT X − γ ≥ 0}

+ σ 2
2 (ω, γ )P 1{ωT X − γ < 0}〉.

Since P 1{ωT X − γ ≤ 0} is nonzero for (ω, γ ) ∈ Sp × [a, b],
both μ1(ω, γ ) and σ 2

1 (ω, γ ) are well defined. Next, since X
has a continuous distribution by Assumption A6, derivations
in Lemma 2 in the Appendix show μ1(ω, γ ) and σ 2

1 (ω, γ )
are both continuous in (ω, γ ). It can be similarly shown that
μ2(ω, γ ) and σ 2

2 (ω, γ ) are continuous and well defined. Thus
M(ω, γ, θ (ω, γ )) is upper semicontinuous (in fact continuous)
in (ω, γ ).

Next the unique maximality of (ω0, γ0) is established.
The conditional expectation of (Y − μ(X,ω, γ ))2 given X is
uniquely minimized when μ(X,ω, γ ) = E(Y |X), that is, when
ω = ω0 and γ = γ0. Thus M(·) is uniquely maximized at
(ω0, γ0).

Establishing the third condition reduces to showing that the
individual classes of functions that comprise {mω,γ,θ(ω,γ )} are
Glivenko–Cantelli (GC) with integrable envelopes. Next the
fact that sums, differences, products, and compositions of GC
classes with integrable envelopes are GC can be used. Lemma
2 in the Appendix provides the proof for this.

Finally the last condition of near maximization is checked.
Lemma 3 in the Appendix establishes the existence of a se-
quence ωs

n ∈ �̂n that converges to ω0 and a corresponding se-
quence of intercept estimates γ s

n ∈ [a, b] that converges to γ0.
By definition, the sieve estimator (ω̂s

n, γ̂
s
n ) satisfies

Mn

(
ω̂s

n, γ̂
s
n , θ̂n

(
ω̂s

n, γ̂
s
n

)) ≥ Mn

(
ωs

n, γ
s
n , θ̂n

(
ωs

n, γ
s
n

))
. (10)

Lemma 4 in the Appendix shows that

|Mn(ωn, γn, θ̂n(ω, γ )) − Mn(ωn, γn, θ (ω, γ ))| → 0

in probability for any sequence (ωn, γn) ∈ Sp × [a, b]. Rewrit-
ing Equation (10) (by adding and subtracting the same expres-
sions) gives

0 ≤ Mn

(
ω̂s

n, γ̂
s
n , θ̂n

(
ω̂s

n, γ̂
s
n

)) − Mn

(
ω̂s

n, γ̂
s
n , θ

(
ω̂s

n, γ̂
s
n

))
+ Mn

(
ωs

n, γ
s
n , θ

(
ωs

n, γ
s
n

)) − Mn

(
ωs

n, γ
s
n , θ̂n

(
ωs

n, γ
s
n

))
+ Mn

(
ω̂s

n, γ̂
s
n , θ

(
ω̂s

n, γ̂
s
n

)) − Mn

(
ωs

n, γ
s
n , θ

(
ωs

n, γ
s
n

))
.

Applying Lemma 4 to the second and the third line above gives

Mn

(
ω̂s

n, γ̂
s
n , θ

(
ω̂s

n, γ̂
s
n

)) ≥ Mn

(
ωs

n, γ
s
n , θ

(
ωs

n, γ
s
n

)) − oP (1).

(11)

Now consider the following decomposition∣∣Mn(ω0, γ0, θ (ω0, γ0)) − Mn

(
ωs

n, γ
s
n , θ

(
ωs

n, γ
s
n

)) ∣∣
≤ |Mn(ω0, γ0, θ (ω0, γ0)) − M(ω0, γ0, θ (ω0, γ0))|

+ ∣∣Mn

(
ωs

n, γ
s
n , θ

(
ωs

n, γ
s
n

)) − M
(
ωs

n, γ
s
n , θ

(
ωs

n, γ
s
n

)) ∣∣
+ ∣∣M (

ωs
n, γ

s
n , θ

(
ωs

n, γ
s
n

)) − M(ω0, γ0, θ (ω0, γ0))
∣∣.

The first two lines go to zero in probability by Lemma 2. The
third line goes to zero in probability since M is continuous in
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Wei and Kosorok: Latent Supervised Learning 963

Figure 2. Estimated subgroups when there is actually only one com-
ponent in the model. The plot here shows that the method gives a rea-
sonable answer when there is only one component. The online version
of this figure is in color.

(ω, γ ) and (ωs
n, γ

s
n ) converges to (ω0, γ0). Thus,∣∣Mn(ω0, γ0, θ (ω0, γ0)) − Mn

(
ωs

n, γ
s
n , θ

(
ωs

n, γ
s
n

)) ∣∣ → 0 (12)

in probability. Combining Equations (11) and (12) gives

Mn

(
ω̂s

n, γ̂
s
n , θ

(
ω̂s

n, γ̂
s
n

))
≥ Mn

(
ωs

n, γ
s
n , θ

(
ωs

n, γ
s
n

)) − oP (1)

= Mn(ω0, γ0, θ (ω0, γ0)) − [
Mn(ω0, γ0, θ (ω0, γ0))

− Mn

(
ωs

n, γ
s
n , θ

(
ωs

n, γ
s
n

)) ] − oP (1)

= Mn(ω0, γ0, θ (ω0, γ0)) − oP (1).

Thus the near-maximization criterion for (ω̂s
n, γ̂

s
n ) is satisfied. �

7. MODEL CHECKING

Model (1) describes the ideal situation where (a) the surro-
gate variable arises from a two-component Gaussian mixture
and (b) component membership is completely determined by a
hyperplane in the covariate space. Suppose the number of com-
ponents in the Gaussian mixture is one, or three or more. The
case when the number of components is three or more will not
be studied in depth here. In such a case, the proposed estimator
is likely to merge two or more similar subgroups, which can

be considered a less serious offense than splitting the sample
into two subgroups when there is in fact no subgroup structure
at all. Fortunately there exist several methods for determining
the number of components in a Gaussian mixture. One common
approach is to add a penalty function, say based on the Bayesian
information criterion, to the main log-likelihood term.

To understand what happens if the proposed method is ap-
plied to the setting where there is no subgroups structure at all,
consider the following simulation setting. Let μ1,0 = μ2,0 = 0
and σ 2

1,0 = σ 2
2,0 = 1 in Model (1). Let the dimension and sample

size be set to p = 5 and n = 100, respectively. The covariate X
is drawn from the standard p-variate Gaussian distribution. The
first p/2 components of ω0 are set to −p1/2 and the rest to p1/2,
and the intercept is set to 1/4. Figure 2 displays the projections
onto the sieve estimated direction ω̂s

n shifted by the estimated
intercept γ̂ s

n against the surrogate variable y. The resulting sub-
groups are indicated by different symbols and are seen to be
highly unbalanced as the plus subgroup contains merely two
members. This greatly suggests that there is indeed only one
component in the model.

Remark 1. Because there are subgroup size constraints in the
estimation process, that is, no subgroup of size one or less is
allowed, for otherwise the sample variation in that group would
be zero, the estimate will never result in two subgroups where
one is completely empty.

Another major violation of Model (1) occurs if the separat-
ing decision boundary is not linear in x. Consider the following
setup: (a) the means and variances are set to (μ1,0, σ

2
1,0) = (0, 1)

and (μ1,0, σ
2
1,0) = (4, 1) and (b) subgroup membership is deter-

mined by the quadratic boundary ||x|| ≤ 2. Intuitively, the esti-
mator will seek to pick out one subgroup that arises from a single
Gaussian signal, while the other subgroup will be a mixture of
the two Gaussian signals. Figure 3 confirms this is indeed the
case. The left panel shows the estimated subgroups. The right
panel plots the surrogate variable in the circle subgroup, which
is clearly bimodal. In general, if the two-component Gaussian
mixture assumption is confirmed to hold, then this type of diag-
nostic suggests the boundary is not linear in x.

Figure 3. Left panel shows estimated subgroups when the decision boundary is not linear but quadratic. Right panel shows the bimodality of
the surrogate variable in the circle subgroup. These plots suggest an easy visual tool to diagnose this type of assumption violation. The online
version of this figure is in color.
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The two issues discussed above are major departures from
Model (1). There are certainly other ways in which the pre-
sumed model may not hold—take departures from the normal
distribution, for instance. This turns out to be a rather minor is-
sue. For one, there exist many methods to transform a univariate
random variable to have an approximate Gaussian distribution.
Also, simulations in the next section suggest that the methodol-
ogy is robust against non-Gaussianity of the surrogate variable.

There is also the question of how to assess whether the surro-
gate variable approximates well the underlying class label. This
is an important, albeit philosophical, issue. In some cases, the
selection of an appropriate surrogate variable can be guided by
previous studies. When this is not possible, a surrogate variable
can be chosen that is interesting in its own right. The binary out-
come of interest can be defined a posteriori with respect to the
chosen surrogate variable. For instance, the surrogate variable
“cholesterol level” is of interest in and of itself. The correspond-
ing binary outcome of interest can then be defined with respect
to this choice.

8. SIMULATIONS

The various simulation settings considered are summarized
in Table 1. The first setting is called Stochastically Ordered
(SO) because the surrogate variable Y is stochastically smaller
in subgroup 1. The second setting is Non-Stochastically Or-
dered (NSO) since subgroup 1 has a smaller mean but a higher
variance than subgroup 2. The third setting, denoted by VO for
Variance Only, has identical means in the subgroups but differ-
ent variances. This is a challenging setting because the noise to
signal ratio is high. Finally, a setting where the surrogate vari-
able arises from the exponential distribution is considered. This
is of interest because many outcome variables related to time
can be well approximated by the exponential distribution. Since
Model (1) assumes normality for the surrogate variable, this set-
ting also tests how robust the methodology is to distributional
violations in Model (1).

The vector of covariates X is distributed as a standard mul-
tivariate Gaussian. Two different settings for the direction ω0

are considered. In the first setting, which shall be referred to as
“sparse,” all components of ω0 are set to zero except the first
two that are set to (2−1/2,−2−1/2). This reflects situations where
only a few covariates matter. In the other setting, which shall be
referred to as “abundant,” the first p/2 components of ω0 are set
to −p1/2 and the rest to p1/2. This reflects situations where all
the covariates drive the separation between the two subgroups.
The intercept is set to γ0 = 1/4, which results in roughly 60/40
split of the data into two subgroups.

Table 1. Description of simulation settings

Simulation setting Subgroup 1 Subgroup 2

Stochastically Ordered (SO) N (0, 1) N (4, 1)
Non-Stochastically Ordered (NSO) N (0, 4) N (4, 1)
Variance Only (VO) N (0, 1) N (0, 4)
Exponentials (EXP) exp(1) exp(10)

NOTE: The subgroups are determined by a hyperplane ωT X − γ = 0 and the distributions
of the surrogate variable Y in each subgroup is given.

Table 2. Sparse ω0, low-dimensional setting. Average norm difference
between estimate and ω0 over 1000 Monte Carlo simulations

Settings NSO SO VO EXP

Y clustering 0.31 (0.11) 0.25 (0.09) 0.85 (0.31) 0.48 (0.18)
X–Y clustering 0.31 (0.11) 0.25 (0.08) 0.84 (0.33) 0.48 (0.18)
EM 0.32 (0.15) 0.27 (0.13) 0.53 (0.23) 0.33 (0.13)
Regression 0.25 (0.10) 0.19 (0.07) 1.07 (0.26) 0.36 (0.13)
SIR 0.24 (0.09) 0.19 (0.07) 0.49 (0.23) 0.29 (0.12)
Simple sieve 0.22 (0.09) 0.20 (0.08) 0.33 (0.18) 0.24 (0.11)
Proposed method 0.14 (0.07) 0.11 (0.05) 0.30 (0.16) 0.20 (0.10)

NOTE: The standard error is given in the parentheses. The best estimator (lowest norm
difference) is highlighted in italics.

Different ratios of sample size to dimension are considered
for the simulations. In the low-dimensional problem, the sample
size is set to n = 100 and dimension to p = 5, and n = 200, p =
25 for the high dimensional. For the sparse setting, Tables 2 and
3 show the average norm difference between the estimate and the
true ω0 over 1000 Monte Carlo simulations for various settings.
The lowest average norm difference is highlighted in italics.
Tables 4 and 5 give the corresponding results for the abundant
setting.

In addition to the methods in Section 4, a comparison of the
proposed methodology will also be made to the simple sieve
method. In the simple sieve method, the estimator is the sieve
maximum likelihood estimator (MLE) defined in (6) using the
simple sieve of MD directions outlined in Section 5.2. The
simulations show the proposed method outperforms the other
methods in all settings considered here. The “boosting” that
comes from incorporating the surrogate variable Y is seen to be
crucial; the final sieve estimator offers a significant improve-
ment over the simple sieve estimator in many settings, espe-
cially high-dimensional settings. The best competitor appears
to be the SIR method though the proposed method outperforms
it in every setting considered here, by large margins at times
(see for instance the low-dimensional settings). Linear regres-
sion performs poorly in the low-dimensional, VO setting. The
simple sieve method is consistently among the worst in the
high-dimensional settings. The two clustering methods perform
very similarly to each other and are decent for the NSO and
SO settings, though they perform poorly for the VO and Exp
simulations.

Table 3. Sparse ω0, high-dimensional setting. Average norm
difference between estimate and ω0 over 1000 Monte Carlo

simulations

Settings NSO SO VO EXP

Y clustering 0.52 (0.08) 0.43 (0.06) 1.13 (0.19) 0.75 (0.11)
X–Y clustering 0.52 (0.08) 0.43 (0.06) 1.14 (0.20) 0.75 (0.11)
EM 0.50 (0.10) 0.43 (0.08) 0.78 (0.18) 0.54 (0.09)
Regression 0.45 (0.07) 0.35 (0.06) 1.28 (0.10) 0.61 (0.09)
SIR 0.44 (0.08) 0.34 (0.05) 0.82 (0.19) 0.54 (0.11)
Simple sieve 0.95 (0.11) 0.91 (0.11) 1.01 (0.13) 0.98 (0.12)
Our method 0.40 (0.08) 0.31 (0.05) 0.72 (0.14) 0.49 (0.10)

NOTE: The standard error is given in the parentheses. The best estimator (lowest norm
difference) is highlighted in italics.
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Table 4. Abundant ω0, low-dimensional setting

Settings NSO SO VO EXP

Y clustering 0.32 (0.12) 0.25 (0.09) 0.85 (0.33) 0.47 (0.17)
X–Y clustering 0.32 (0.12) 0.25 (0.09) 0.84 (0.34) 0.47 (0.17)
EM 0.32 (0.15) 0.26 (0.12) 0.55 (0.23) 0.33 (0.13)
Regression 0.25 (0.10) 0.20 (0.07) 1.05 (0.26) 0.36 (0.13)
SIR 0.24 (0.09) 0.19 (0.07) 0.50 (0.24) 0.29 (0.12)
Simple sieve 0.22 (0.09) 0.21 (0.08) 0.35 (0.18) 0.25 (0.11)
Proposed method 0.14 (0.07) 0.11 (0.06) 0.33 (0.18) 0.19 (0.10)

NOTE: Average norm difference between estimate and ω0 over 1000 Monte Carlo sim-
ulations. The standard error is given in the parentheses. The best estimator (lowest norm
difference) is highlighted in italics.

Simulation run times for low-dimensional n = 100, p = 5
and high-dimensional n = 200, p = 25 settings are as follows.
For the former, 473.125580 sec were needed for 100 Monte
Carlo runs, resulting in approximately 5 sec for each individual
run. For the latter, 2883.471355 sec were needed for 100 Monte
Carlo runs, which gives an approximate run time of half-a-
minute for each individual run. The current implementation
relies heavily on for-loops in MATLAB. This is known to be
computationally slow and the algorithm has great potential to be
improved. Finally, the performance of the methods seem quite
insensitive to the setting of ω0.

9. EXAMPLES

The proposed method is applied to three health-related
datasets. The first two come from the UCI Machine Learning
Repository (Frank and Asuncion 2010). The third was used as an
example in chapter 1 of Hastie, Tibshirani, and Friedman (2003)
and is available at the book’s web site. The full list of variables
and preprocessing steps for each dataset are described in the
Appendix. The subgroups discovered by the proposed method
will be compared to the ones given by the binary variable, if
available. For the first two data examples, the method is able to
achieve, without using the binary training labels, classification
accuracy comparable to logistic regression, a fully supervised
procedure. For the third dataset that does not have binary labels,
an interpretation for the subgroups discovered by the proposed
method is offered.

9.1 Pima Indian Diabetes Dataset

The Pima Indian Diabetes dataset contains information on
eight clinical measurements, including a 2-hr insulin measure-

Table 5. Abundant ω0, high-dimensional setting

Settings NSO SO VO EXP

Y clustering 0.52 (0.08) 0.43 (0.06) 1.14 (0.19) 0.75 (0.11)
X–Y clustering 0.52 (0.08) 0.43 (0.06) 1.15 (0.19) 0.75 (0.11)
EM 0.50 (0.09) 0.43 (0.07) 0.78 (0.18) 0.54 (0.08)
Regression 0.45 (0.07) 0.35 (0.06) 1.28 (0.10) 0.61 (0.09)
SIR 0.44 (0.08) 0.34 (0.06) 0.83 (0.19) 0.53 (0.10)
Simple sieve 0.94 (0.12) 0.90 (0.10) 1.01 (0.13) 0.98 (0.12)
Proposed method 0.41 (0.08) 0.31 (0.06) 0.72 (0.13) 0.50 (0.09)

NOTE: Average norm difference between estimate and ω0 over 1000 Monte Carlo sim-
ulations. The standard error is given in the parentheses. The best estimator (lowest norm
difference) is highlighted in italics.

ment, for 768 individuals. It also records whether each indi-
vidual later developed diabetes. The proposed method will be
applied to find a diabetes and nondiabetes subgroup. The cor-
responding surrogate variable should approximately satisfy the
normality assumption in Model (1) and be relevant to the binary
event of interest. The 2-hr insulin measurement is a reasonable
surrogate for the unobserved binary outcome and was approx-
imately Gaussian. Furthermore, 374 out of the 768 total cases
were missing the 2-hr insulin measurement. Since classification
in the proposed method is completely determined by a separat-
ing hyperplane in the covariate space, it does not make use of
the surrogate variable for classifying future objects. Thus the
surrogate variable can be a quantity that is difficult to measure
or obtain, as is the case here, since it is used only in the learning
process.

The projections of the covariates onto the estimated sepa-
rating hyperplane are shown in the first panel of Figure 4. A
smoothed histogram of the 2-hr insulin measurement in each
discovered subgroup is shown in the next two panels of Figure 4.
There is a bit of departure from Gaussianity here, but it does not
seem severe enough to affect the performance of the method.
The circle subgroup corresponds well with the individuals who
later develop diabetes and the plus subgroup with those who did
not.

The classification test error of the proposed method is as-
sessed on an independent test set consisting of the 374 indi-
viduals missing the 2-hr insulin measurement. The percentage
reported is the misclassification rate on this test set. The error
rates of logistic regression and three “off-the-shelf” methods
described in Section 4—Y clustering, X–Y clustering, and the
EM algorithm—are also examined. The bottom row in Table 6

Figure 4. Diabetes dataset. The first panel shows the projections onto the estimated separating hyperplane versus the surrogate variable, 2-hr
insulin. The second and third panels show the distribution of the surrogate variable in each of the discovered subgroups. The online version of
this figure is in color.
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Table 6. Classification accuracy

Dataset The proposed method Logistic regression Y clustering X–Y clustering EM

Heart 0.23 (0.06) 0.18 (0.04) 0.40 (0.05) 0.43 (0.09) 0.41 (0.05)
Diabetes 0.27 0.26 0.29 0.29 0.30

NOTE: For the Heart dataset, accuracy is measured by 10-fold cross-validation. Standard error across the folds is given in the parentheses. For the Diabetes dataset, accuracy is measured
by the test error on a held-out test set of 374 cases who are missing the 2-hr insulin measurement. The italicized text indicates the method with the lowest error rate.

shows the performance of each method for this data example.
To make the methods comparable, the surrogate variable used
in the proposed method is not included in the logistic regression
model. Logistic regression is a rather minor improvement over
the proposed method considering that it requires trained labels.
The EM, Y clustering, and X-Y clustering are all slightly less
accurate than the proposed method.

9.2 Cleveland Heart Disease Dataset

This dataset contains information on heart disease for 297
individuals. There are 13 clinical measurements in addition to
the diagnosis, that is, presence/absence of heart disease. The
data were collected from the Cleveland Clinic Foundation. The
proposed method was applied to find a subgroup with heart dis-
ease and a subgroup without. The maximum-heart-rate-achieved
variable was chosen as the surrogate variable because it was ap-
proximately normally distributed and is correlated to cardiac
mortality (Lauer et al. 1999).

The projections of the covariates onto the estimated sepa-
rating hyperplane are shown in the first panel of Figure 5. A
smoothed histogram of the maximum-heart-rate measurement
for each discovered subgroup is shown in the last two panels of
Figure 5. The Gaussian assumption seems to hold quite well and
there is no indication that the two-component structure is incor-
rect. The plus subgroup corresponds well with the individuals
who were diagnosed with heart disease and the circle subgroup
with those who were not.

Because the dataset is relatively small, a large independent
test set could not be afforded and the 10-fold cross-validation
error rate is reported instead. The first row of Table 6 shows
the error rates of the proposed method, logistic regression, and
three off-the-shelf methods. Unsurprisingly, the logistic regres-
sion has the best accuracy because it uses trained labels. The
proposed method performs relatively well considering that it
does not use labeled data at all. The other methods, EM, Y

clustering, and X–Y clustering, perform quite poorly for this
dataset.

9.3 Prostate Cancer Dataset

The Prostate dataset comes from a study that examined the re-
lationship between the level of Prostate-Specific Antigen (PSA)
and certain clinical measures in men who were about to re-
ceive a radical prostatectomy. The dataset has information on
97 subjects and eight covariate measurements. Using the log
PSA (lpsa) as the surrogate variable, the proposed method is
applied to find two subgroups that differ in terms of lpsa. There
is no binary outcome variable provided in this dataset. How-
ever, PSA is known to be associated with more severe grades
of prostate cancer, so the binary outcome could be taken to be
“more severe” versus “less severe” grades of prostate cancer.

Figure 6 is a scatterplot of the continuous covariates in the
Prostate dataset. The subgroups found by the proposed method
are displayed as different symbols, with the circle subgroup hav-
ing higher lpsa. Taking a look at Figure 6, patients with higher
lpsa (circle) indeed have higher log cancer volume (lcavol) and
log prostate weight (lweight).

Other interesting covariates include the categorical variables
seminal vesicle invasion (SVI) and Gleason score (gleason).
The presence of SVI generally means a poor outlook for the
patient and a high Gleason score means the cancer is more likely
to have spread past the prostate. Surprisingly, patients without
SVI are split roughly evenly between the subgroups, but those
with SVI are entirely from the circle subgroup (higher lpsa), see
Figure 7(a). The circle subgroup also has higher Gleason scores
on average than the plus subgroup, see Figure 7(b).

10. DISCUSSION

In this article, a new type of machine learning task was in-
troduced called latent supervised learning. This type of learn-

Figure 5. Heart dataset. The first panel shows the projections onto the estimated separating hyperplane versus the surrogate variable,
maximum-heart-rate achieved. The second and third panels show the distribution of the surrogate variable in each of the discovered subgroups.
The online version of this figure is in color.
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Wei and Kosorok: Latent Supervised Learning 967

Figure 6. Scatterplot of the continuous covariates in the Prostate dataset. A complete list of the full names of the variables is given in the
Appendix. The symbols represent the subgroups found by the proposed method where the circle subgroup has higher lpsa values on average.
Note that the circle subgroup has higher log cancer volume (lcavol) and higher log prostate weight (lweight), two variables that are linked to the
severity of the cancer. The online version of this figure is in color.

ing represents a paradigm shift away from the conventional
assumption that labels are either completely unavailable (as in
unsupervised learning) or when available, hard-coded truths (as
in supervised learning) to the more realistic idea that labels are
actually “fuzzy” in nature. A specific problem in latent super-
vised learning was studied called the change-line classification
problem. The proposed estimator was shown to be accurate on
simulated data and provide meaningful and interpretable results
on real datasets.

A major challenge to the proposed methodology is high-
dimensional data settings. The simulations in Section 8 show
that the performance of the proposed method suffers when di-
mension is increased from 5 to 25. The high-dimensional setting
presents various challenges already familiar to modern statisti-
cians. If sparsity is assumed for the coefficients of the normal
vector to the separating hyperplane, likelihood penalization is a

promising approach. This is an active field of research and many
existing techniques can be borrowed for extending the proposed
method to high-dimensional settings. Another approach is to
improve the construction of the simple sieve. This currently
requires training a binary linear classifier given a particular enu-
meration of the class labels. When the dimension is very high,
noise will hamper the accuracy of the candidate directions in
the simple sieve. The boosting in the second part of the sieve
construction may not be enough to compensate for the effects
of the noise. A simple solution is to first reduce the dimension
of the covariates using principal component analysis. Directions
along which there is very little variation are unlikely to play an
important role in the classification rule and thus can be safely
discarded.

Other future problems include extending Model (1) to the
case where Y is a survival time. It is of direct clinical interest

Figure 7. Distributions of the subgroups discovered by the proposed method in the Prostate dataset for the categorical variables SVI and
gleason. Note that the circle subgroup (higher lpsa) mostly comprises the higher end of the Gleason score and comprises the presence for SVI
entirely.
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to find subgroups that are homogeneous with respect to some
biological characteristic, gene expression for example, but differ
with respect to survival. The extension to survival data would be
straightforward if the survival times were completely observed
but will require careful development in the case of censoring.
Work has begun to address the case of right-censored survival
data.

Another problem of interest is to extend the change-line clas-
sification problem studied here to the change-line regression
problem. In the regression problem, the regression function
changes when crossing a separating hyperplane in the covariate
space. This could be of interest to fields such as personalized
medicine which postulate that different subgroups experience
different treatment effects.

As for the theoretical aspects of the proposed methodology,
rate of convergence and weak convergence of the estimator
remain open problems. A closer look at the simple sieve defined
in Section 5.2 and Lemma 3 reveals that the simple sieve is much
richer than necessary. However despite this, it does not perform
nearly as well as the boosted sieve as evidenced by simulations
in Section 8. This suggests that boosting may induce a speed-up
of the rate of convergence and hence yield better performance
on finite samples.

APPENDIX

A.1. PROOFS

Lemma 1. Let �K1,K2 := {θ = (μ1, σ
2
1 , μ2, σ

2
2 ) : |μ1|, |μ2| < K1,

1
K2

< σ 2
1 , σ 2

2 < K2}, where K1 ∈ (0, ∞) and K2 ∈ (1, ∞). Let
(X1, Y1), . . . , (Xn, Yn) be iid from Model (1), under Assumptions
(A1)—(A6), the class of functions

{mω,γ,θ (x, y) : (ω, γ ) ∈ Sd × [a, b], θ ∈ �K1,K2}
is GC.

Proof of Lemma 1. Recall the definition of m:

mω,γ,θ (x, y) = − log
[(

σ 2
1 − σ 2

2

)
1{ωT x − γ ≥ 0} + σ 2

2

]
− [y − (μ1 − μ2)1{ωT x − γ ≥ 0} − μ2]2(

σ 2
1 − σ 2

2

)
1{ωT x − γ ≥ 0} + σ 2

2

.

Lemma 8.12 in Kosorok (2008) establishes the measurability of the
class of indicator functions {1(ωT x − γ ≥ 0) : (ω, γ ) ∈ K}. Stan-
dard Vapnik-Chervonenkis (VC) class arguments then show the class
{1(ωT x − γ ≥ 0) : (ω, γ ) ∈ K} is GC. The classes

{μj : (ω, γ ) ∈ Sd × [a, b], θ ∈ �K1,K2 }
and {

σ 2
j : (ω, γ ) ∈ Sd × [a, b], θ ∈ �K1,K2

}
,

for j = 1, 2 are trivially GC as they are not data dependent. Further-
more, these classes have integrable (in fact finite) envelopes by the
definition of �K1,K2 . The preservation result given by corollary 9.27 (i)
and (ii) in Kosorok (2008) can now be applied to show the classes

{(μ1 − μ2)1{ωT x − γ ≥ 0} + μ2} with envelope K1,{(
σ 2

1 − σ 2
2

)
1{ωT x − γ ≥ 0} + σ 2

2

}
with envelope K2,

and {
1(

σ 2
1 − σ 2

2

)
1{ωT x − γ ≥ 0} + σ 2

2

}
with envelope K2,

are GC with finite envelopes. Using corollary 9.27 (iii), we have the
class {

log
((

σ 2
1 − σ 2

2

)
1{ωT x − γ ≥ 0} + σ 2

2

)}
that is GC with integrable envelope log K2. The class

{y : (ω, γ ) ∈ Sd × [a, b], θ ∈ �K1,K2 }
is GC simply by the regular Law of Large Numbers. The function |y|
is an envelope for this class and is integrable since E|Y | < ∞ by (A4).
The class

{(y − (μ1 − μ2)1{ωT x − γ ≥ 0} − μ2)2}
has an integrable envelope since EY 2 < ∞ by (A4). Using corollary
9.27 (i) and (iii), we can show the class is GC. Applying corollary 9.27
(i) and (ii) one last time gives the desired result that mω,γ,θ is itself a
GC class. �

Lemma 2. Let (X1, Y1), . . . , (Xn, Yn) be iid from Model (1). Under
Assumptions (A1)–(A6), the class of functions

{mω,γ,θ(ω,γ ) : (ω, γ ) ∈ Sd × [a, b]}
is GC.

Proof of Lemma 2. We can apply Lemma 1 directly to show the
desired result. First we show there exists some K1 ∈ [0, ∞) such that
|μ1(ω, γ )|, |μ2(ω, γ )| < K1 for all (ω, γ ) ∈ Sd × [a, b]. For the class
of functions {μ1(ω, γ )}, we can write

μ1(ω, γ ) = P (Y1{ωT X − γ ≥ 0})
P (1{ωT X − γ ≥ 0}

= 1

P (1{ωT X − γ ≥ 0}P
({

Y1
{
ωT

0 X − γ0 ≥ 0
}

+ Y1
{
ωT

0 X − γ0 ≥ 0
}}

1{ωT X − γ ≥ 0})
= 1

P (1{ωT X − γ ≥ 0}P
({

μ1,01
{
ωT

0 X − γ0 ≥ 0
}

+ μ2,01
{
ωT

0 X − γ0 ≥ 0
}}

1{ωT X − γ ≥ 0})
≤ max μ1,0, μ2,0.

The above also shows μ1(ω, γ ) ≥ min μ1,0, μ2,0 and thus |μ1(ω, γ )| ≤
K1 = max |μ1,0|, |μ2,0|. Similarly, we can show |μ2(ω, γ )| ≤ K1.

Next we show there exists some K2 ∈ (0, ∞) such that 1
K2

<

σ 2
1 (ω, γ ), σ 2

2 (ω, γ ) < K2. We have

σ 2
1 (ω, γ )

= P {(Y − μ1(ω, γ ))21{ωT X − γ ≥ 0}}
P (1{ωT X − γ ≥ 0}

= [
P

{
(Y − μ1(ω, γ ))21{ωT X − γ ≥ 0} {

1
{
ωT

0 X − γ0 ≥ 0
}

+ 1
{
ωT

0 X − γ0 < 0
}}}] /

[P (1{ωT X − γ ≥ 0}]
= [

P
{(

σ 2
1,0 + (μ1,0 − μ1(ω, γ ))2

)
1

{
ωT

0 X − γ0 ≥ 0
}

× 1{ωT X − γ ≥ 0}}] /
[P (1{ωT X − γ ≥ 0}]

+ [
P

{(
σ 2

2,0 + (μ2,0 − μ2(ω, γ ))2
)

1
{
ωT

0 X − γ0 < 0
}

× 1{ωT X − γ ≥ 0}}] /
[P (1{ωT X − γ ≥ 0}].

Thus we have c1 ≤ σ 2
1 (ω, γ ) ≤ c2, where

c1 = inf
ω,γ∈K

min
{
σ 2

1,0 + (μ1,0 − μ1(ω, γ ))2, σ 2
2,0 + (μ2,0 − μ1(ω, γ ))2

}
and

c2 = sup
ω,γ∈K

max
{
σ 2

1,0+(μ1,0−μ1(ω, γ ))2, σ 2
2,0+(μ2,0−μ1(ω, γ ))2

}
.
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Because |μ1(ω, γ ) is bounded, we have that c1 and c2 are both finite. Let
K2 be such that 1/K2 < c1 and K2 < c2. Then 1

K2
< σ 2

1 (ω, γ ) < K2.

A similar argument can be applied to σ 2
2 (ω, γ ). �

Lemma 3. Let (X1, Y1), . . . , (Xn, Yn) be iid from Model (1). Under
Assumptions (A1)–(A6), there exists a sequence ωn in �̂n that con-
verges to ω0, where �̂n is the boosted sieve defined in Equation (8).
Further the corresponding intercept estimate γn ∈ [a, b] is consistent
for γ0.

Proof of Lemma 3. Recall that the sieve �̂n is populated by boosted
MD directions{

ν̂n(ωMD(P ), γ MD(P ))T 
̂−1/2
xx : P ∈

⋃
k

Pk

}
,

where ν̂n is the largest eigenvector of V̂n, which was defined in
Equation (7) as

V̂n(ω, γ ) =
H∑

h=1

(|Ih,1(ω, γ )|m̂h,1(ω, γ )m̂h,1(ω, γ )′

+ |Ih,2(ω, γ )|m̂h,2(ω, γ )m̂h,2(ω, γ )′).

Let ph,1(ω, γ ) = E1{Y ∈ Ih, ω
T X − γ ≥ 0} and ph,2(ω, γ ) =

E1{y ∈ Ih, ω
T X − γ < 0} be the theoretical proportions in

each subslice. Let Z = 
−1
xx [X − EX] be the standardized co-

variate and mh,1(ω, γ ) = E[E(Z|Y )|Y ∈ Ih, ω
T X − γ ≥ 0] and

mh,2(ω, γ ) = E[E(Z|Y )|Y ∈ Ih, ω
T X − γ < 0] be the theoretical

means in each subslice. Define the matrix

V (ω, γ ) =
H∑

h=1

ph,1(ω, γ )mh,1mh,1(ω, γ )′

+
H∑

h=1

ph,2(ω, γ )mh,2(ω, γ )mh,2(ω, γ )′.

It is easy to see that V̂n(ω, γ ) is uniformly consistent for V (ω, γ ) over
(ω, γ ) ∈ Sd × [a, b]. By corollary 3.1 in Li (1991) which uses (A5),
the largest eigenvector of V (ω, γ ) falls in the linear space generated
by ω0


1/2
xx . Since ν̂n(ω, γ ) is consistent for the largest eigenvector of

V (ω, γ ) and 
̂xx is consistent for 
xx , we have ν̂n(ω, γ )T 
̂−1/2
xx →

ω0 uniformly over (ω, γ ) ∈ Sd × [a, b]. We can find a corresponding
intercept estimate that is consistent in the following manner. For a
consistent estimator ωn of ω0, the corresponding intercept estimate
given by

γn = min arg max
γ∈�̂n(ωn)

Ln(ωn, γ, θ̂n(ωn, γ ))

= min arg max
γ∈�̂n(ωn)

Mn(ωn, γ, θ̂n(ωn, γ ))

is consistent for γ0. To see this, we invoke the Argmax Theorem in
Kosorok (2008) along with the continuity of M to show γn converges
to the argmax over γ of M(ω0, γ, θ (ω0, γ ). By the proof in Theorem
1, however, the argmax of M(ω0, γ, θ (ω0, γ )) over γ is γ0. �

Lemma 4. Let Mn and θ̂n be as defined in Section 6 and
Equation (5), respectively. Under Assumptions (A1)–(A6), we have

sup
(ω,γ )∈Sd×[a,b]

|Mn(ω, γ, θ̂n(ω, γ )) − Mn(ω, γ, θ (ω, γ ))| → 0 (A.1)

in probability.

Proof. In general, if a class of functions F is GC then |Pnf −
Pf | → 0 in probability uniformly in f varying overF . It is obvious then
that |Pnf̂n − P f̂n| → 0 in probability for every sequence of random
functions f̂n contained in F . Furthermore if f̂n → f0 and the random

sequence is dominated so that P f̂n → Pf0, then it follows that Pnf̂n →
Pf0.

In Lemma 2, it was shown that for some K1, K2, θ (ω, γ ) ∈
�K1,K2 for all (ω, γ ) ∈ Sd × [a, b]. It follows that there exists a
δ-neighborhood around θ (ω, γ ) that lives in �K ′

1,K ′
2

for some K ′
1,K

′
2

for all (ω, γ ) ∈ Sd × [a, b]. To see this, set K ′
1 = K1 + δ and let K ′

2 be
such that K2 + δ < K ′

2 and 1/K ′
2 < 1/K2 − δ. Thus the enlarged class

F δ = {mω,γ,θ (x, y) : (ω, γ ) ∈ Sd × [a, b], θ ∈ θδ(ω, γ )}
is contained in �K ′

1,K ′
2

and is hence GC. By Lemma 5, θ̂n is uniformly

consistent for θ over (ω, γ ) ∈ Sd × [a, b]. Then we have θ̂n(ω, γ ) ∈
θδ(ω, γ ) for n large enough for all (ω, γ ) ∈ Sd × [a, b]. This implies
the class of functions

{mω,γ,θ̂n(ω,γ )(x, y) : (ω, γ ) ∈ Sd × [a, b]} ⊂ F δ

for n large enough and is hence GC, that is,

sup
(ω,γ )∈Sd×[a,b]

|Mn(ω, γ, θ̂n(ω, γ )) − M(ω, γ, θ̂n(ω, γ ))| → 0

in probability. Then we have by the continuity of M

sup
(ω,γ )∈Sd×[a,b]

|Mn(ω, γ, θ̂n(ω, γ )) − M(ω, γ, θ(ω, γ ))| → 0

in probability. Using this and Lemma 2 once again, we have

sup
(ω,γ )∈Sd×[a,b]

|Mn(ω, γ, θ̂n(ω, γ )) − Mn(ω, γ, θ(ω, γ ))|

≤ sup
(ω,γ )∈Sd×[a,b]

|Mn(ω, γ, θ̂n(ω, γ )) − M(ω, γ, θ(ω, γ ))|

+ sup
(ω,γ )∈Sd×[a,b]

|Mn(ω, γ, θ(ω, γ )) − M(ω, γ, θ(ω, γ ))|

= oP (1) + oP (1).

Thus we have proven (A.1). �
Lemma 5. Let θ̂n be as defined in Equation (5). Under Assumptions

(A1)–(A6), θ̂n(ω, γ ) is uniformly consistent for θ (ω, γ ) over (ω, γ ) ∈
Sd × [a, b], that is,

sup
(ω,γ )∈Sd×[a,b]

|θ̂n(ω, γ ) − θ (ω, γ )| → 0

in probability.

Proof. We showed in Lemma 1, the classes {y : (ω, γ ) ∈ Sd ×
[a, b], θ ∈ �K1,K2 } are GC with an integrable envelope. We also
showed the class of indicator functions 1{ωT X − γ ≥ 0} is GC.
We can apply corollary 9.27 (ii) in Kosorok (2008) to see the nu-
merator of μ̂1, n−1

∑n
i=1 yi1{ωT xi − γ ≥ 0} converges in probabil-

ity to P (Y1{ωT X − γ ≥ 0}) uniformly over (ω, γ ) ∈ Sd × [a, b]. The
denominator n−1

∑n
i=1 1{ωT xi − γ ≥ 0} converges in probability to

P (1{ωT X − γ ≥ 0}), which is bounded away from zero, uniformly
over (ω, γ ) ∈ Sd × [a, b]. Thus, μ̂1(ω, γ ) converges in probability to
μ1(ω, γ ) uniformly. A similar argument can be applied to μ̂2(ω, γ ).

The estimated variance σ̂ 2
1 is given by

σ̂ 2
1 (ω, γ ) =

∑
i(yi − μ̂1(ω, γ ))21{ωT xi − γ ≥ 0}∑

i 1{ωT xi − γ ≥ 0} .

The numerator converges to P ((Y − μ1(ω, γ ))21{ωT X − γ ≥ 0}),
while the denominator converges to P (1{ωT X − γ ≥ 0}), which is
bounded away from zero by assumption. Thus σ̂ 2

1 (ω, γ ) converges in
probability to σ 2

1 (ω, γ ) uniformly over (ω, γ ) ∈ Sd × [a, b]. A similar
argument can be applied to σ̂ 2

2 (ω, γ ). �

A.2. DATA PRE-PROCESSING AND SUMMARY
OF DATA FEATURES

The Cleveland Heart Disease Dataset is available at the UCI Machine
Learning Repository (Frank and Asuncion 2010). The dataset actually
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Appendix A.1. Dataset features

Heart Diabetes Prostate

1. Age in years 1. Number of times pregnant 1. log cancer volume (lcavol)
2. 1 = male, 0 = female 2. Plasma glucose concentration 2. log prostate weight (lweight)
3. Chest pain type 3. Diastolic blood pressure 3. age
4. Resting blood pressure 4. Triceps skin fold thickness 4. log of the amount of benign prostatic hyperplasia (lbph)
5. Serum cholesterol 5. Body mass index 5. Seminal vesicle invasion (SVI)
6. Fasting blood sugar indicator 6. Diabetes pedigree function 6. log of capsular penetration (lcp)
7. Resting electrocardiographic results 7. Age (years) 7. Gleason score (gleason)
8. Maximum heart rate achieved 8. Percent of Gleason scores 4 or 5 (pgg45)
9. Exercise induced angina indicator

10. ST depression induced by exercise
relative to rest

11. Slope of the peak exercise ST
segment

12. Number of major vessels colored
by fluoroscopy

13. 3 = normal, 6 = fixed
defect, 7 = reversible defect

contains 76 features, but most published work seems to focus on the
subset listed in Table A.1. There is a feature titled “goal,” valued from
0 to 4, corresponding to the degree of heart disease in the patient. The
presence of heart disease (1,2,3,4) was combined into a single group
versus the absence of heart disease (0).

The Pima Indian Diabetes Dataset is also available at the UCI ma-
chine learning repository. The binary variable of interest is whether the
patient has diabetes. The dataset also contains information on various
clinical measurements, summarized in Table A.1. This is a large dataset
with 768 cases. Some minimal preprocessing was necessary as certain
cases have missing values encoded by 0 (where a 0 value would actu-
ally be biologically impossible). Three-Nearest Neighbors was used to
impute the missing values. Also, a large number of cases (about 300)
are missing feature 5, the 2-hr serum insulin measurement, which was
taken to be the surrogate variable.

The Prostate Cancer dataset was analyzed in Chapter 1 of Hastie,
Tibshirani, and Friedman (2003) and is available on the authors’ web
site. No preprocessing was necessary.

[Received August 2012. Revised January 2013.]
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