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1 Introduction

Laber and Murphy [8] address the important and interesting question of how to accurately

assess the performance of a classifier that is produced from a fixed data set. Performance

is measured by the conditional test error of the classifier, that is, the probability that the

given classifier will mislabel a future observation drawn from the same distribution as the

training data. (In what follows, we will use the terms conditional test error and test error

interchangeably.) In practical situations, where the distribution of the data is unknown, the

ideal way to assess test error is by means of a sufficiently large test set that is independent of

the training set used to produce the classifier. The paper focuses on problems in which the

size of the training data set is small, and obtaining independent test samples is impossible,

or impractical.

Laber and Murphy advocate the use of interval estimates rather than point estimates of

the test error. In this regard, it should be mentioned that there are a number of good point

estimates for the unconditional test error of a classification procedure, such as K-fold cross

validation. There are also good point estimators for the conditional test error, such as the

.632+ bootstrap estimator of Efron and Tibshirani [3]. In either case, using point estimates

to produce confidence intervals for the conditional test error is problematic. Using a point

estimator for the unconditional test error as a point estimate of the conditional test error is
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ill-advised if the latter has high variance, compounding the already difficult task of interval

construction (cf. Nadeau and Bengio [9], Jiang et al. [5] and Braga-Neto and Dougherty [2]).

On the other hand, point estimators of the conditional test error often involve many layers

of randomness and dependence, making it difficult to assess their variance. For instance,

the authors in [3] point out it is difficult to obtain a standard error estimate for the .632+

estimator and do not study it.

The problem of forming a confidence interval for the test error of a given classifier differs

from more routine interval estimation problems, in that the parameter of interest is itself

random, varying from training set to training set. The need for improved interval estimates

is illustrated in [8] by a simulation study, and the analysis of several real data sets. It is a

central thesis of the paper that the failure of existing confidence interval procedures, such as

the centered percentile bootstrap and normal approximation, is due to their neglect of the

excess variation resulting from the randomness of the test error. The adaptive confidence

interval (ACI) method proposed by Laber and Murphy attempts to address the effects of

added variation. Roughly speaking, the ACI divides the available data points into those

that are close to, and those that are far from, the optimal linear decision boundary. Upper

and lower confidence bounds are then generated by considering the largest and smallest

misclassification rates of the points that are close to the boundary. The empirical results

of the paper suggest that the ACI is a good alternative to existing confidence interval

procedures.

It is worth noting that Laber and Murphy do not solve the general problem of finding

confidence intervals for the conditional test error of classification rules produced by an

arbitrary classification procedure. Indeed, their method and results are restricted to the case

of procedures that produce a linear classification rule by minimizing a convex loss function.

While this setting is general enough to include the important special case of support vector

machines (SVM) with linear kernels, it does not include popular classification procedures

such as nearest centroid, nearest neighbor, and decision trees. Moreover, linear classifiers

are often better suited to high dimensional problems, a setting which the ACI cannot

currently handle. In low dimensional problems, linear classifiers may lack the flexibility to

capture the potentially complicated geometry of Bayes decision boundaries. Nevertheless,

the ACI method provides a promising first step towards a solution to the general problem.

Developing related methods for other low- and high-dimensional classification procedures

would be of both practical and theoretical interest.
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1.1 Overview

The next section outlines the technical framework of the confidence interval problem and

briefly reviews the centered percentile bootstrap. An overview and discussion of the ACI

is given in Section 3. Section 4 outlines a modification of the ACI while Section 5 presents

an extension of the ACI to high dimensional low sample settings. A preliminary simulation

study comparing these methods with the ACI and CPB is given in Section 6.

2 Preliminaries

2.1 Technical Framework

Let Tn = {(X1, Y1), . . . , (Xn, Yn)} be a training set whose elements (Xi, Yi) ∈ Rp × {−1, 1}

are independent and identically distributed with distribution P , and let Pn = n−1
∑n

i=1 δ(Xi,Yi)

denote the empirical measure associated with Tn. The ACI method is built around a classi-

fication procedure that minimizes the Pn-expectation of a loss-type function L(x, y, β) over

vectors β in Rp. Formally, L(x, y, β) is, for each x, y, a convex function of β. In practice,

it is a convex upper bound on the 0/1-loss L′(x, y, β) = I(xtβy < 0) of a linear classifier

sign(xtβ) associated with the normal vector β. Let

β̂n = arg min
β∈Rp

PnL(X,Y, β) β∗ = arg min
β∈Rp

PL(X,Y, β).

be the directions that minimize the empirical L-loss and expected L-loss, respectively. The

test error is the probability τ(β̂n) := PI(Y Xtβ̂n < 0) that the classifier sign(xtβ̂n) will

mislabel a new feature. The test error depends on the training set Tn, and is therefore

random. For fixed α ∈ (0, 1), upper and lower confidence bounds correspond to functions â

and b̂ of the training data Tn such that

P(â ≤ P I{Y Xtβ̂n} ≤ b̂) = 1− α,

where P denotes expectation with respect to training data. It is evident from the last display

that the bounds â and b̂ should account for the variance of the test error.

2.2 The Centered Percentile Bootstrap

A natural starting point for an interval estimate of the test error is the centered percentile

bootstrap (CPB) confidence interval. The CPB interval is formed by bootstrapping the

quantity
√
n(Pn − P ) I{Xtβ̂n Y < 0}. (1)
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Let û and l̂ be, respectively, the 1− α/2 and α/2 percentiles of the numbers

√
n(P bn − Pn) I{Xtβ̂bn Y < 0}, b = 1, . . . , B, (2)

where b indexes bootstrap samples of the training set. The 1− α CPB confidence interval

is given by

[PnI{Xtβ̂n Y < 0} − û/
√
n, PnI{Xtβ̂n Y < 0} − l̂/

√
n ]. (3)

In their empirical studies, Laber and Murphy demonstrate that the CPB confidence in-

tervals, and confidence intervals based on a normal approximation of the test error, exhibit

marked under coverage (anti-conservative behavior) in small samples. Clearly the perfor-

mance of these methods will improve as sample size increases, but for small samples the CPB

fails to capture the additional variation in the test error due to the non-smoothness of the

0-1 loss. Through simulations, Laber and Murphy demonstrate the improved performance

of the CPB that can result from replacing the 0-1 loss with a smooth surrogate.

3 The ACI Method

3.1 Boundary Points

The first step in constructing the ACI is identifying points in the training set that are close

to the decision boundary xtβ∗ = 0 of the linear classifier minimizing the expected L-risk.

To do this, the ACI method performs, for each covariate vector Xi, a test of the hypothesis

Xt
iβ
∗ = 0. The test accepts when Xi is contained in the set Bn = {x : (xtβ̂n)2 ≤ a−1n xtΣx},

where an = o(n) is a fixed threshold, and Σ is (an estimate of) the asymptotic covariance

matrix of β̂n.

Figure 1 shows the results of a simple simulation in R5, in which the class conditional

distributions are Gaussian with unit covariance, and differ only in the first coordinate of their

mean vectors, +1.2 and -1.2, respectively. Following [8], a linear classifier was constructed

via the squared error loss from a training sample of size n = 30 and size n = 100. Notice

what the hypothesis test deems as boundary points matches our intuition closely, that is,

the projection magnitudes of these accepted points are among the smallest in the data set.

However, not all points with a small projection value are classified as boundary points.

In addition to choice of the threshold an, the ACI hypothesis test requires an estimate of

the asymptotic covariance matrix Σ of β̂n. While this is straightforward for the squared error

loss, consideration of more general (and more common) loss functions may be problematic.
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Figure 1: Each point represents an element (xi, yi) of the training set. The y-axis displays

the projections xtiβ̂n. Points colored in red (the plus symbols) are accepted by the ACI

hypothesis test. The accepted points have among the smallest projection values, in absolute

terms.

For example, the asymptotic covariance for the hinge loss was only recently derived in Koo

et al. [7].

3.2 Upper and Lower Confidence Bounds

The ACI method is closely related to the CPB confidence interval. The ACI can be viewed

as a corrected version of the CPB interval that accounts for the additional variation of the

conditional test error due to the non-smoothness of the 0-1 loss. The ACI upper bound is

based on a bootstrap percentile of the quantity

inf
u∈Rp

GnI{X ∈ Bn}I{XtuY < 0} + GnI{X ∈ Bc
n}I{Xtβ̂n Y < 0} (4)

where the boundary points Bn are defined in Section 3.1. The ACI lower bound is based

on bootstrap percentiles of an analogous quantity, in which the infimum is replaced by a

supremum.

From [8], we gather that variation in the conditional test error arises, in part, from non-

smoothness of the 0-1 loss in conjunction with data points that are close to the boundary

of the optimal linear classifier sign(xtβ∗). The ACI attempts to capture this additional

variation by considering the largest and smallest classification error rates on a training set

that consists only of the boundary points. If they are produced from the same bootstrap

samples, the ACI always contains the CPB confidence interval, and reduces to it if there

are no boundary points. It is worth noting that, while both intervals depend critically on

the training error, neither is centered at this quantity.

The asymptotic analysis of the ACI method in [8] considers two situations. The first
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situation encompasses regular cases in which P (Xtβ∗ = 0) = 0, and the second encompasses

non-regular cases in which P (Xtβ∗ = 0) > 0. In regular cases, the CPB interval and the ACI

provide the correct asymptotic coverage, though the ACI always contains the CPB interval.

In non-regular cases, the CPB is potentially inconsistent, but the ACI is guaranteed to be

conservative. Non-regular cases are of interest, as they encompass situations in which the

variance of the test error does not tend to zero with increasing sample size.

The regularity condition P (Xtβ∗ = 0) = 0 is satisfied whenever the distribution of

X has a density with respect to Lebesgue measure, which is a reasonable assumption in

practical situations where some level of homogeneous noise is present. The theoretical results

guarantee good asymptotic properties of the ACI under general assumptions. However,

they do not fully explain the improved performance of ACI in finite samples. In the regular

case, for example, the CPB interval is consistent, and the theoretical results suggest that

the consistency of the ACI holds in spite of, not because of, its extremal consideration of

boundary points. One obvious reason for the improvement of ACI over the typically anti-

conservative CPB intervals in finite samples is that the ACI expands those of the CPB. A

less conservative procedure, lying between the CPB interval and the ACI is discussed below.

4 Modifications of the ACI

We investigated several modest changes to the ACI. Based on preliminary simulations, these

modifications appear to offer some improvements.

4.1 Motivation

The optimization used to obtain β̂n may potentially lead to overfitting. For small samples,

PnL(X,Y, β̂n) tends to be less than than PL(X,Y, β̂n). Indeed, an elementary argument

shows that

PnL(X,Y, β̂n) = PL(X,Y, β̂n)−∆n + (Pn − P )L(X,Y, β∗)

where ∆n = (PnL(X,Y, β∗) − PnL(X,Y, β̂n)) + (PL(X,Y, β̂n) − PL(X,Y, β∗)). Both ∆n

and (Pn−P )L(X,Y, β∗) will tend to zero with increasing n, but the former term will usually

do so more slowly. (See Hastie et al. [4] for a more detailed discussion of overfitting.) We

expect that in many cases an analogous relationship will hold for the 0-1 loss (with β̂n still

optimized with respect to the convex loss L), namely, the training error will be less than

the test error with high probability.
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Overfitting is likely one reason for the poor reported performance of the normal approxi-

mation based confidence interval. The training error tends to underestimate the conditional

test error, and therefore the plug-in variance estimate in [8] is too small, leading to under-

coverage. This might be remedied with a better point estimate of the test error, but the

difficulty in obtaining such estimates makes this approach less desirable.

Figure 2: CPB upper bound does not cover but ACI does cover.

Overfitting also has implications for the ACI lower bound. In small sample settings,

the CPB confidence interval tends to undercover. We are interested in situations in which

the ACI delivers the correct coverage, but the CPB confidence interval fails to do so. This

can happen in one of two ways, illustrated in Figure 2 and 3. Simulations indicate under-

coverage of the CPB can be largely attributed to its upper bound being too small, rather

than its lower bound being too large.

Figure 3: CPB lower bound does not cover but ACI does cover.

As discussed in the beginning of this section, the training error is likely to be less than

the test error. Moreover, the CPB lower bound is likely to be less than the training error.

This is because the 1 − α/2 percentile of the quantities in (2), û, is typically positive. To

see this, note that in order for û to be positive, it only takes very few bootstrap values

of the quantity in (2) to be positive. This has the implication that the situation depicted

in Figure 3 is more likely to be observed in practice than the situation in Figure 2. Thus

the CPB lower bound is a good candidate for a lower bound on the conditional test error,
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while the smaller ACI lower bound is often too conservative. The ACI upper bound is also

subject to some degree of over-conservatism due to the exhaustive search over all of Rp.

4.2 Proposed Modifications

Based on the observations above, we considered two simple improvements to the ACI. The

first improvement is to replace the ACI lower bound by the greater (less conservative) CPB

lower bound. The second improvement is to replace the ACI upper bound by a smaller (less

conservative) bound that lies between it and the CPB upper bound. We describe the upper

bound in more detail. Recall that the ACI upper bound is based on bootstrap percentiles of

the quantity (4). The infimum captures the best case training error of the boundary points

over all linear classifiers. However, in order to address variation of the test error, we are

primarily interested in classifiers that might have arisen from other training data arising

from the same distribution. Subsamples of the training data provide an obvious proxy for

new training data.

Let Ω ⊂ 2Tn be a collection of subsamples of the original training data Tn. Consider

a collection of classifiers {β̂Sn : S ∈ Ω} obtained by minimizing the average of L(x, y, β)

over subsamples S of the training data.. Accordingly, we replaced the infimum over Rp in

(4) by a minimum over a family of directions Fn := β̂n ∪ {β̂Sn : S ∈ Ω}. (Notice Fn is

data-dependent). The resulting quantity was then bootstrapped, as in the ACI. Details of

the choice of Ω are given in Section 6. As the modified ACI always lies between the CPB

confidence interval and the standard ACI, it follows immediately from the theory in [8] that

the interval resulting from our modifications is consistent when P (Xtβ∗ = 0) = 0.

5 An Upper Limit for High Dimensional Data

Currently, the ACI is restricted to the low dimensional setting. Nevertheless, many applica-

tions in hand are int he high dimensional setting. This is due to the fact that an exhaustive

search over Rp would produce extreme conservatism, rendering the resulting confidence in-

terval useless. Laber and Murphy suggest a remedy by replacing the exhaustive search with

a restricted set of classifiers. Here we briefly suggest one such approach.

In high dimension, low sample size settings, overfitting is more pronounced. In most

cases, the training error and CPB lower bound are both equal to zero. As a preliminary

step, in this setting we take zero as the lower confidence bound, though we expect that this

simple choice can be improved.

8



Another feature of the high dimension, low sample size setting is that most data points

will be close to the empirical decision boundary xtβ̂n = 0. For support vector machines,

this phenomena is readily observed as “data piling”: the projections of most points onto

the direction vector β̂n are close to those of the support vectors. See Ahn and Marron [1]

for a discussion of this phenomena. With these considerations in mind, we considered an

upper confidence bound obtained by bootstrapping the uncentered quantity

sup
u∈Fn

P I{Y Xtu < 0}. (5)

As in the low dimensional case, Fn contains β̂n, and additional direction vectors β̂Sn obtained

by subsampling the training data.

6 Preliminary Simulation Results

We applied the methods proposed in Sections 4.2 and 5 to several real and simulated data

sets of varying dimension. Many of the data sets we considered here were also used by Laber

and Murphy in [8]. Gaussian data (LD for low dimension, and HD for high dimension) was

generated in the same fashion as the boundary point simulation in Section 3.1. In the case

of data sets taken from the UCI machine learning repository, the true generative model is

unknown. Following [8], we substitute the empirical distribution function of the data set as

the true generative model. A summary of the data sets considered is given in Table 1.

Name Features Instances Source τ(β̂n), n = 30 τ(β̂n), n = 100

Quad 2 NA Simulated .1088 .1131

Gaussian LD 5 NA Simulated .1508 .1241

Liver 7 345 UCI .3859 .3593

Balance 5 576 UCI .0800 .0518

Gaussian HD 50 NA Simulated .3493 .2329

Sonar 60 208 UCI .3476 .2198

Spam 57 4601 UCI .3669 .2231

Table 1: Test data sets used to evaluate confidence interval performance. The last two

columns show the average test error for a linear classifier based on the squared error loss

and 30 or 100 samples.
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For the method proposed in Section 4.2, the family Fn consisted of β̂n and direction

vectors produced from 50 random subsamples of sizes .1n, .2n, . . . , .9n (a total of 451 di-

rections), using squared error loss. The tuning parameter an was chosen following the

guidelines in Section 3.4 of [8]. For the upper confidence limit proposed in Section 5, the

family Fn consisted of β̂n and classifiers produced from 100 random subsamples of sizes

.6n, . . . , .9n (a total of 401 directions). In this case, we did not include subsamples of size

.1n to .5n because in high dimensional settings, classifiers constructed from such a small

portion of the data are not good candidates for possible classifiers constructed from the

original training data of size n.

Due to time constraints, we implemented a ”lazy” version of the ACI, in which the

infimum and supremum were taken over 500 vectors in Rp uniformly distributed on the

p − 1 unit sphere. It is clear that the standard ACI method will always yield confidence

intervals that contain the lazy ACI. Tables 2 and 3 contain a comparison of the modified

ACI set out in Section 4.2, the lazy ACI, and the CPB. For the three high dimensional data

sets, Table 4 compares the coverage of the upper confidence limit set out in Section 5 and

the CPB upper bound, and Table 5 compares the interval widths. There are no reported

values of the lazy ACI for the high dimensional data sets because the standard ACI is not

applicable in the high dimensional low sample size setting. All results are based on 1000

Monte Carlo iterations, with 100 bootstrap resamples per iteration. Comparisons between

the methods are based on the same bootstrap resamples.

n=30 n=100

lazy ACI modified ACI CPB lazy ACI modified ACI CPB

Quad 0.99 0.96 0.83 0.99 0.97 0.91

Gaussian LD 1.00 0.95 0.80 1.00 0.97 0.88

Liver 0.96 0.96 0.83 0.99 0.93 0.87

Balance 1.00 0.96 0.87 1.00 0.99 0.91

Table 2: Low dimensional data sets: coverage comparison between lazy ACI, modified ACI,

and CPB for squared error loss. Target coverage is .95.
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n=30 n=100

lazy ACI modified ACI CPB lazy ACI modified ACI CPB

Quad 0.29 0.27 0.17 0.20 0.15 0.11

Gaussian LD 0.37 0.32 0.19 0.25 0.17 0.12

Liver 0.52 0.36 0.27 0.32 0.23 0.17

Balance 0.29 0.26 0.14 0.16 0.14 0.08

Table 3: Low dimensional data sets: interval widths comparison between lazy ACI, modified

ACI, and CPB for squared error loss. Target coverage is .95.

As the tables show, the modified ACI provides comparable coverage, with intervals

that are generally smaller than those of the lazy ACI. Both methods outperform CPB in

terms of better coverage. In the high dimensional examples, the upper confidence limit is

somewhat conservative, while the CPB severely undercovers. The coverage values for the

high dimensional data sets in Table 4 make it clear that the CPB upper bound is falling

short of the mark, while the upper confidence limit tends to overshoot.

n=30 n=100

Upper Limit CPB Upper Limit CPB

Gaussian HD 0.97 0.02 1.00 0.38

Sonar 0.99 0.06 1.00 0.23

Spam 0.96 0.08 1.00 0.73

Table 4: High dimensional data sets: coverage comparison between the upper confidence

limit proposed in Section 5, and CPB upper bound for squared error loss. Target coverage

is .95.

n=30 n=100

Upper Limit CPB Upper Limit CPB

Gaussian HD 0.13 -0.12 0.18 -0.01

Sonar 0.15 -0.09 0.13 -0.03

Spam 0.14 -0.10 0.21 0.03

Table 5: High dimensional data sets: comparison of interval widths between the upper

confidence limit proposed in Section 5, and CPB upper bound for squared error loss. Target

coverage is .95. Width is defined to be upper bound minus test error.
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