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Image and statistical analysis of melanocytic histology

Aims: We applied digital image analysis techniques to
study selected types of melanocytic lesions.
Methods and results: We used advanced digital image
analysis to compare melanocytic lesions as follows: (i)
melanoma to naevi, (ii) melanoma subtypes to naevi,
(iii) severely dysplastic naevi to other naevi and (iv)
melanoma to severely dysplastic naevi. We were
successful in differentiating melanoma from naevi
[receiver operating characteristic area (ROC) 0.95]
using image-derived features, among which those
related to nuclear size and shape and distance between
nuclei were most important. Dividing melanoma into
subtypes, even greater separation was obtained (ROC
area 0.98 for superficial spreading melanoma; 0.95 for

lentigo maligna melanoma; and 0.99 for unclassified).
Severely dysplastic naevi were best differentiated from
conventional and mildly dysplastic naevi by differences
in cellular staining qualities (ROC area 0.84). We found
that melanomas were separated from severely dysplas-
tic naevi by features related to shape and staining
qualities (ROC area 0.95). All comparisons were
statistically significant (P < 0.0001).
Conclusions: We offer a unique perspective into the
evaluation of melanocytic lesions and demonstrate a
technological application with increasing prevalence,
and with potential use as an adjunct to traditional
diagnosis in the future.
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Introduction

Melanoma is a significant cause of morbidity and
mortality in the western world, with increasing
incidence.1 The diagnosis and treatment of melanoma
and related neoplasms has been described as ‘difficult
and dangerous for all concerned’,2 and a false negative
diagnosis of melanoma is the single most common
reason for filing a malpractice claim against a pathol-

ogist.3 A diagnosis of melanoma is made commonly via
histological examination of clinically suspicious lesions.
However, there are well-known difficulties in differen-
tiating melanoma from benign melanocytic lesions on
simple histological examination.4 Image analysis uses
digital technology to identify and quantitate what the
human eye may or may not see, and is a tool that
pathologists are likely to utilize increasingly in the
future, especially with more frequent digitization of
slides.5

In current practice, histological analysis is based
most commonly on qualitative features as interpreted
(sometimes semisubjectively) by a pathologist. Tradi-
tional histological features that pathologists look for
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differ based on the tissue type at hand. In the context of
melanoma, both architectural and cytological features
are assessed. In comparison to benign lesions, melan-
ocytic lesions demonstrate disordered architecture,
asymmetry and melanocytic epidermotropism (abnor-
mal spreading into the epidermis), as well as cytological
pleomorphism and atypia.6 Our study concentrated on
characterizing cellular (cytometric and morphometric)
characteristics and how they compared among differ-
ent types of melanocytic lesions.

There are many examples in pathology where
subjectivity leads to high inter-rater variability. The
dermatopathologist is intimately familiar with this type
of dilemma, especially in the context of the ongoing
arguments over the classification scheme of dysplastic
naevi.7 This subjectivity complicates patient treatment
and is frustrating for clinicians, and for patients who

experience the first-person effects of pathological ambi-
guity. It is our goal to help to clarify this ambiguity
while increasing objectivity and reproducibility.

Technology has changed drastically since the his-
torical development of a large framework of dermato-
pathological knowledge by Ackerman and others in the
last century.8,9 Some areas of pathology are increas-
ingly using a combination of computer technology and
pathology to make diagnoses. For example, automated
quantification has been applied to breast hormone
markers10 and is being employed increasingly by
laboratories to facilitate this diagnostic process. The
use of image analysis in immunohistochemistry has
done much to facilitate decision-making in this area.

In this paper we show that image analysis in
conjunction with statistical classification can give deep
and useful interpretations. The mind of a well-trained
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Figure 1. Scanning, intermediate and high-power images of mildly dysplastic naevus (A), severely dysplastic naevus (B) and superficial

spreading melanoma (C).
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pathologist can assess simultaneously dozens if not
hundreds of characteristics of a given slide. In order to
approximate the human mind, a computer would need
to analyse and assess many characteristics of an image
and use the composite of this assessment to justify an
outcome.11 Our goal is not to replace the pathologist,
but to help the pathologist understand what he or she
is seeing and also to set a foundation for future
endeavours.

Materials and methods

case selection and annotation

This study was based on a series of 49 haematoxylin
and eosin-stained slides representing different types of
melanocytic lesions. Specifically, of malignant lesions
(melanoma), 12 slides represented superficial spread-
ing melanoma, four lentigo maligna melanoma and
five a combination of other types of melanoma. Of
benign lesions, 11 slides represented conventional

naevi, 10 mildly dysplastic naevi and eight severely
dysplastic naevi. These slides were chosen by the
groups’ dermatopathologist (J.W.) from cases seen at
University of North Carolina at Chapel Hill (UNC-CH)
hospitals. Figure 1 shows examples of a mildly dys-
plastic naevi (A), severely dysplastic naevi (B) and
superficial spreading melanoma (C). Slides were
scanned digitally using Aperio ScanScope. Our der-
matopathologist then annotated melanocytic cell
groups in each image using Aperio Virtual Slide-
viewing software. ‘Groups’, in this context, is used to
signify collections of multiple melanocytes, often in
nests, with little intervening stroma and without a
significant component of other cell types (lymphocytes,
etc.). Melanocytic groups were annotated near the
dermo–epidermal junction or superficial dermis of
conventional and dysplastic naevi. Melanoma cell
groups were chosen which were thought to be
representative of the lesion. The outcome was 113
groups of superficial spreading melanoma, 37 groups
of lentigo maligna melanoma and 40 groups repre-

A B C D

Figure 2. High power images of original hematoxylin and eosin stained groups of benign melanocytic cells were scanned into Aperio ScanScope

(A). All groups underwent a standardization stage to account for differences in staining between slides (B). Images were digitally analyzed

and features extracted. An example readily shows such features as calculated nuclear area (referred to as area) and Delaunay triangulation,

values which both tended to be larger in melanoma than in naevi (C). An approximation for whole cell borders (referred to as region) was also

used (D). Many more features were also analysed.

A B C D

Figure 3. High power images of original hematoxylin and eosin stained groups of malignant melanoma cells were scanned into Aperio

ScanScope (A). All groups underwent a standardization stage to account for differences in staining between slides (B). Images were digitally

analyzed and features extracted. An example readily shows such features as calculated nuclear area (referred to as area) and Delaunay

triangulation, values which both tended to be larger in melanoma than in naevi (C). An approximation for whole cell borders (referred to as

region) was also used (D). Many more features were also analysed.
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senting a combination of other types of melanoma. We
annotated 99 groups of conventional naevi, 59 groups
of mildly dysplastic naevi and 54 groups of severely
dysplastic naevi. Therefore altogether we examined
190 groups of melanoma and 212 groups of naevi (49
slides, 402 groups or annotated areas of melanocytic
lesions). The study was approved by the internal
review board (IRB) of UNC-CH.

standardization

Prior to image analysis, the images were standardized
to account for differences in staining intensity and stain
fading over time (Figures 2 and 3). This was accom-

Table 1. Features examined during image analysis. For each
feature, the full population was transformed individually as
appropriate to make distributions approximately standard
Gaussian. Features were summarized over each group using
both the mean and standard deviations of 31 features
resulting in a total of 62 values or features

1. Area

2. Hu 1

3. Hu 2

4. Hu 3

5. Hu 4

6. Perimeter ratio

7. Region area ratio

8. Eccentricity

9. Rotation

10. Ellipseness

11. Convexity

12. Gabor feature stain 1 scale 5

13: Gabor feature stain 1 scale 10

14. Gabor feature stain 1 scale 20

15. Gabor feature stain 2 scale 5

16. Gabor feature stain 2 scale 10

17. Gabor feature stain 2 scale 20

18. Mean stain 1

19. Mean stain 2

20. Mean residual

21. SD stain 1

22. SD stain 2

23. SD residual

24. Region mean stain 1

25. Region mean stain 2

26. Region mean residual

27. Region SD stain 1

28. Region SD stain 2

29. Region SD residual

30. Mean Delaunay

31. Maximum Delaunay

SD, Standard deviation.

Table 2. A short description of features analysed is provided.
Several of these features have been used or described
elsewhere. Area is indicative of an approximated nucleus
while region is indicative of an approximated whole cell

Nuclear area

Perimeter ratio (defined as the ratio between nuclear
boundary length and the square root of the nuclear
area, used to measure boundary irregularities)

Region area ratio (the ratio of the area of the nucleus
and the area of the surrounding Voronoi cell, used to
measure nuclear density)

Eccentricity (the eccentricity of the best-fitting ellipse to
a nucleus, defined as sin[acos(b ⁄ a)], where b is the
length of the minor and a the length of the major half-
axis of the ellipse)

Rotation of the ellipse (to assess directionality of nuclei)

Ellipseness (deviation in percent of nuclear shape from
the best-fitting ellipse shape relative to the nuclear
area, as a region-based measure of nuclear irregularity)

Convexity (deviation in percentage of the convex hull of
the nuclear shape from the nuclear shape relative to
nuclear area) and the Hu moment invariants16 of the
nuclei as nuclear geometric features

Further, we use the means and standard deviations of
the intensities of the haematoxylin stain (stain 1), the
eosin stain (stain 2) and the stain residual of the nuclei
and their whole cell regions as colour features

Texture is assessed by Gabor features14,15 (evaluated at
three spatial scales and for eight orientations) for the
haematoxylin and eosin stains

Delaunay – average of line in triangulation14,15

We further compute the mean and the maximum
edge-length of the Delaunay triangulation
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plished through mathematical techniques developed by
our group, which used stain vector variation correc-
tion, and eliminated secondary differences in stain
intensity due to different stains, manufacturers, proce-
dures and storage time.12,13

feature extraction

Once standardized, images were analysed digitally in
order to extract features. We developed software to
segment the nuclei (approximations are referred to as
‘area’) and to provide a proxy for cell borders (known
as ‘region’) for both benign and malignant cell types
(Figures 2 and 3). Thirty-one quantitative features
were then identified. For each feature, the full popula-
tion was transformed individually as appropriate to
make distributions approximately standard Gaussian.
Features were summarized over each group using both
the mean and standard deviations of 31 features,
resulting in a total of 62 values or features (Table 1,
descriptions in Table 2). We refer the reader elsewhere
for a description of the Gabor (texture quantification)
and Delaunay (based on distances between nuclear
centres) features,14,15 as well as Hu moment invariants
(which capture aspects of nuclear shape).16

statistical analysis

Once data for each of these characteristics were col-
lected, they were analysed statistically using DiProPerm
analysis. DiProPerm is a non-parametric hypothesis test
that is especially well suited to high-dimensional data. In
this analysis, we use DiProPerm to test the null
hypothesis of equal group means. Our initial compari-
son, chosen a priori, was that of all melanoma to all
naevi. We also explored approximately 20 pairwise
comparisons between different melanoma versus naevus
subtypes. We used a Bonferroni adjustment for multiple
comparisons. Four pertinent pathological contexts were
then chosen for explicit discussion, as follows.

1 Comparison of all melanoma versus all types of naevi.
2 Comparison of melanoma World Health Organiza-

tion (WHO) subtypes to all types of naevi.
3 Comparison of lesions classified as severely dysplas-

tic naevi to all other naevi subtypes, including
conventional naevi and mildly dysplastic naevi.

4 Comparison of all melanoma to severely dysplastic
naevi.

In each of these contexts we measured the degree of
separation using the receiver operating characteristic
(ROC) area, assessed statistical significance using the
DiProPerm P-value, and identified which features drove
each separation.

Results

During data analysis regarding all melanoma versus all
naevi, we found that the histological features which
drove the separation between these two subsets were
nuclear area, mean Delaunay, convexity and perimeter
ratio (Figure 4A). All these values were larger in
melanoma than in naevi. The ROC area for this context
was 0.95, P < 0.0001 (Figure 4B).

We found that dividing melanoma into subtypes
produced even greater separation. ROC area for super-
ficial spreading melanoma versus all naevi was 0.98,
P < 0.0001. The ROC area for lentigo maligna mela-
noma versus all naevi was 0.96, P < 0.0001. Finally,
the ROC area for all other types of melanoma versus all
naevi was 0.99, P < 0.0001.

We also compared severely dysplastic naevi to all other
types of naevi. We found that separation of these two
data subtypes was driven by differences in the standard
deviation of calculated whole cell eosin staining inten-
sities (less in severely dysplastic naevi versus others),
average whole cell eosin staining intensities, standard
deviation of haematoxylin staining in each whole cell
and mean nuclear area (we called these standard region
mean stain 2, mean region mean stain 2, mean region
standard stain 1 and mean area; Figure 5A). All these
values except the first, standard region mean stain, were
greater in severely dysplastic naevi. The ROC area for
these data was 0.84, P < 0.0001 (Figure 5B).

We compared all melanoma to severely dysplastic
naevi. We found that separation of these lesions was
driven by approximated shape features (mean Dela-
unay, convexity), nuclear eosin staining (mean stain 2)
and a nuclear textural feature (mean Gabor stain 1).
All these features were greater in melanoma than in
severely dysplastic naevi except for mean Gabor stain 1
(Figure 6A). The ROC area for these data was 0.95,
P < 0.0001 (Figure 6B).

Discussions ⁄ Conclusions

During our analysis we found that the features which
best separated malignant melanoma from naevi were
as follows.

1 Mean area nuclear area; greater in melanoma.
2 Mean Delaunay (the mean edge length of a triangu-

lation based on the cell centres); greater in melanoma.
3 Mean convexity (a measure of the convexity of the

segmented nucleus); greater in melanoma.
4 Mean perimeter ratio [the ratio of the length of the

nuclear perimeter to the square root of the area
(nuclear) which indicates irregularity of nuclear
boundary]; greater in melanoma.
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Further, we found that this separation was improved
by dividing melanoma into subtypes. Each subtype of
melanoma had a larger ROC area when compared to
naevi than when all melanomas were included
together. Features that best differentiated severely dys-
plastic naevi from other naevi and mildly dysplastic naevi
were as follows.

1 Standard region mean stain 2 (differences in eosin
staining intensities between whole cell regions). We
found that severely dysplastic naevi demonstrated
less variability, i.e. lower standard deviation, in
whole cellular eosin staining than other types.

2 Mean region mean stain 2 (mean eosin staining
intensities of the region). We found that severely
dysplastic naevi demonstrated greater average
eosin staining of the approximated whole cell
region than other types of naevi.
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Figure 4. A, These features were most useful in driving the separa-

tion of melanoma from naevi. While the name provided on the bar

also indicates statistical transformation, the top four features repre-

sent nuclear area, mean Delaunay, convexity and perimeter ratio (top

10 features are shown). B, Area under the receiver operator

characteristic (ROC) curve of 0.95, P < 0.0001.
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Figure 5. A, These features were most useful in driving the separa-

tion of severely dysplastic naevi from other types of naevi. While the

name provided on the bar also indicates statistical transformation,

the top four features represent differences in the standard deviation of

calculated whole cell eosin staining intensities (calculated whole cell

called ‘region’ and staining differences are less in severely dysplastic

naevi than in others), average eosin staining intensities, average

standard deviation of haematoxylin nuclear staining in each nuclei

(calculated nuclei is called ‘area’) and mean nuclear area. B, Area

under the receiver operator characteristic (ROC) curve of 0.84,

P < 0.0001.
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3 Mean region standard stain 1 (the larger this value,
the more haematoxylin staining variability there is
in the whole cell region of each cell in that type of
lesion). This value was greater in severely dysplastic
naevi.

4 Mean area (nuclear area) was greater in severely
dysplastic naevi.

Finally, separation of melanoma from severely
dysplastic naevi was driven by the following.

1 Mean Delaunay (the mean edge length of a
triangulation based on the cell centres); greater
in melanoma.

2 Mean convexity (a measure of the convexity of the
segmented nucleus); greater in melanoma.

3 Mean stain 2 (mean eosin staining intensities of the
area). We found that melanoma demonstrated
greater average eosin staining of the area (approx-
imated nuclei) than severely dysplastic naevi.

4 Mean Gabor stain 1 (textural differences of the
nuclei) was greater in severely dysplastic naevi and
also drove separation of these two entities.

Of course, while the features listed above drove
separation of these lesion types most significantly, true
separation and hence ROC areas were derived from a
composite of all features. It might have been hoped that
one dominant feature would be adequate to classify
lesions; however, this is not the case. In fact, many
features are needed for effective separation and are
accounted for in our method.

Some of our results confirm intuitive expectations.
For example, mean nuclear area, mean Delaunay,
mean convexity and mean perimeter ratio being
greater in melanoma compared with naevi is very
reasonable and correlates with the subjective experi-
ence of the pathologist in comparing many melanomas
to benign lesions. The separation we obtained between
individual melanoma subtypes and naevi, which was
greater than when we included all melanomas together
as a whole, also seems natural. This is because slightly
different features may drive the traditional diagnosis of
melanoma subtypes6 which, when taken in aggregate,
diminish the strength of any one feature.

Our analysis regarding the separation of severely
dysplastic from other naevi reveals properties which
are more difficult for the pathologist to assess visually:
we found the standard deviation of staining intensities
and average staining intensities to be significant
driving forces, while more easily conceptualized fea-
tures such as standard deviation of area and mean
nuclear area played a secondary role. Conversely, the
long-standing disagreement over dysplastic naevi cytol-
ogy may be related to the fact that these important
features are difficult to assess visually. What is unique
about our analysis is that we need not rely on any one
feature to separate these lesions independently; instead,
we are using 62 features simultaneously to allow the
greatest distinction possible. This is of major impor-
tance, and a significant difference between our study
and previous cytometric analyses.

An objective method of differentiating melanoma
from severely dysplastic naevi may aid clinical man-
agement. We found that these two entities were
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Figure 6. A, These features were most useful in driving the separa-

tion of melanoma from severely dysplastic naevi. While the name

provided on the bar also indicates statistical transformation, the top

four features represent approximated shape features (mean Delaunay,

convexity), nuclear eosin staining (mean stain 2) and a nuclear

textural feature (mean Gabor stain 1). The top 10 features are shown.

B, Area under the receiver operator characteristics (ROC) curve of

0.95, P < 0.0001.
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separated by calculated shape features (mean Dela-
unay, convexity, greater in melanoma) and by features
approximating nuclear eosin staining (mean stain 2)
and texture (mean Gabor stain 1, greater in dysplastic
naevi). Moreover, combining all 62 features yields
powerful separation (P < 0.0001).

Relatively few studies have attempted this level of
analysis of melanocytic lesions. Several papers have
used image analysis to clarify the debate regarding the
presence or absence of cytological atypia in dysplastic
naevi. A 1990 paper17 contributed to the discussion of
whether dyplastic naevi exhibit cytological changes by
looking at four morphological characteristics: nuclear
area, standard deviation of nuclear area, nuclear
roundness, standard deviation of nuclear roundness.
They found the latter three features to be significantly
greater for dysplastic naevi than for conventional
naevi. They also found that melanoma differed signif-
icantly from dysplastic naevi in mean nuclear area,
standard deviation of nuclear area, mean ploidy and
standard deviation of ploidy.17 While their paper used
different methods to examine different characteristics, it
is interesting to compare their principal findings with
ours. One of these findings was that the nuclear area
was greater in melanoma than in naevi, which was
consistent with our results. This group also compared
melanoma to dysplastic naevi and found that mean
nuclear area and standard deviation of nuclear area
were significantly greater for melanoma than dysplastic
naevi. In our study, we found that the greatest factor
differentiating melanoma from all types of naevi was
mean nuclear area, and that standard deviation of
nuclear area played a significant but secondary role.
Other investigators have also found that mean nuclear
area is greater for melanoma and severely dysplastic
naevi than other types of naevi.18 Another paper
emphasized the importance of texture in the evaluation
of melanocytic lesions.19 Textural features are subtle
and are often emphasized less than other characteris-
tics; however, we also utilized texture (measured by
standard deviation of stain as well as Gabor features in
our analysis), and found that it was important in
helping to drive the separation of categories.

Despite differences in design, set-up and goals mak-
ing direct comparison difficult, our major findings are
largely consistent with these earlier reports, which we
have built upon and taken in novel directions. In
particular, our analysis is strengthened by the use of
new and sophisticated colour normalization ⁄ standard-
ization techniques with advanced statistical and com-
putational techniques that examine many features not
previously evaluated.

Our study has a number of limitations. For example,
we use a data set that focuses on cytological rather
than architectural features. It is widely recognized that
architectural features are important for the diagnosis
and differentiation of benign from dysplastic naevi from
malignant melanoma. In many cases, architectural
features may outweigh cytological differences. A sec-
ond caveat to our analysis is that the features that we
have highlighted as being important differences be-
tween these types of lesions are strictly those that the
computer views as being important, and that a
pathologist looking at the lesions would see these
features only subconsciously, or not at all. This is
especially true for less intuitive features, such as
standard deviation of staining intensities. Thirdly, it is
well known that melanoma can take on a variety of
types, and we have selected several more common
types to use in our analysis. Some of the most difficult
diagnostic dilemmas occur when examining Spitz or
Spitzoid lesions, that our study does not include.
However, the comparisons we made with more typical
lesions were strongly statistically significant. We think
that Spitzoid lesions and other less common presenta-
tions would be an interesting area of study for the
future; however, for this study we chose to focus on
lesions of indisputable diagnosis. One final important
caveat is that while there is generally little ambiguity
between melanoma versus conventional naevi, there
are more differences of opinion when grading dysplastic
naevi into mild and severe. While the diagnosis of
dysplastic naevi can, in most cases, be made architec-
turally, we cannot rule out the notion that during the
grading process other pathologists might not have
subcategorized the lesions exactly as we did, thereby
adding a minimal level of subjectivity to the results of
our third comparison.

In ordinary life, we are used to thinking in three
dimensions. In considering our data, we analyse it in 62
dimensions, with each dimension being an image
feature. We are then able to take all these features in
composite to analyse the data most clearly. In our
current application we are looking to separate mela-
noma from naevi and dysplastic naevi from conven-
tional and mildly dysplastic naevi. One might hope for a
single ‘magic bullet’ feature that would give 100%
separation between groups of melanocytic entities.
Unfortunately, this does not exist. Instead, a composite
of multiple features provides the best separation. Com-
putational analysis allows for the comparison of multi-
ple features to obtain a substantial degree of separation.

With increasing technology and better software, the
application of this type of analysis becomes increasingly
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practical and it follows that the use of digital analysis to
aid in the interpretation of histological images is an
aspect of pathology that should increase in the future.
This motivates the need to study, improve and explore
such analysis. Our study is unique in its utilization of
sophisticated methods to study melanocytic histology
and provides a foundation for future studies.

Digital imaging may be used to help predict progno-
sis, as has been reported with regard to renal and
bladder cancers.20,21 Work is currently being con-
ducted to improve the traditional classification of
melanoma by forming subgroups that are genetically
more homogeneous and therefore more significant
from a bench and clinical viewpoint.22,23 Much of the
recent research in melanoma has gravitated towards
using specific drugs for lesions with specific muta-
tions,24 and it is hoped this approach may provide
therapeutic benefit and improve survival. It is possible
that image analysis could help in the prediction of
mutation status. Using the experience we have gained
during this analysis, these are concepts we hope to
explore in the future.
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