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ABSTRACT

Deep neural networks (DNN) are singular statistical models which exhibit complex degeneracies.
In this work, we illustrate how a quantity known as the learning coefficient introduced in singular
learning theory quantifies precisely the degree of degeneracy in deep neural networks. Importantly,
we will demonstrate that degeneracy in DNN cannot be accounted for by simply counting the num-
ber of “flat” directions. We propose a computationally scalable approximation of a localized version
of the learning coefficient using stochastic gradient Langevin dynamics. To validate our approach,
we demonstrate its accuracy in low-dimensional models with known theoretical values. Importantly,
the local learning coefficient can correctly recover the ordering of degeneracy between various pa-
rameter regions of interest. An experiment on MNIST shows the local learning coefficient can reveal
the inductive bias of stochastic opitmizers for more or less degenerate critical points.

1 Introduction

Most models in machine learning are singular: there are points in parameter space where small changes to the param-
eter leave the model unchanged (Watanabe, 2007). While these degenerate parameters form a measure zero subset,
their effect is far from negligible. In particular, Singular Learning Theory (SLT) shows that the geometry of these
degenerate points determines the asymptotics of learning (Watanabe, 2009). The theory explains observable effects
of degeneracy in common machine learning models under practical settings (Watanabe, 2018) and has the potential to
account for important phenomena in deep learning (Wei et al., 2022) such as phase transitions.

The two central quantities of SLT are the learning coefficient λ and singular fluctuation ν. Many notable SLT results
are conveyed through them. They correspond roughly to the complexity and functional diversity of the model class.
Their theoretical values have been documented in only a limited number of settings (Aoyagi and Watanabe, 2005,
2006).

In this work, we are interested in the local learning coefficient λ(w∗) and local singular fluctuation ν(w∗) for some
parameter of interest w∗. Our first contribution is to lay out theoretical conditions that render these local quantities
well-defined. Our second contribution is to explain why the local learning coefficient captures the true nature of de-
generacy in singular models in a way that Hessian-based measures simply cannot, for the existence of zero eigenvalues
of the Hessian in DNNs is more than a technical annoyance. Rather, a complete shift in perspective is required for
singular models and SLT provides exactly the tools to do so.
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Quantifying degeneracy in singular models via the learning coefficient

Figure 1: Distribution of λ̂(w∗) for two different critical points w∗; the vertical lines indicate the true λ(w∗) with
smaller indicating more degenerate. Note the estimates, on average, respect the true ordering of λ(w∗). See Section
10.2 for details.

Our final major contribution is to propose a scalable estimator λ̂(w∗) that accurately reflects the level of degeneracy
around w∗. Our focus is on getting the ordinality correct. We establish experimentally that, on average, λ̂(w∗

A) <

λ̂(w∗
B) exactly when λ(w∗

A) < λ(w∗
B), that is, when w∗

A is more degenerate than w∗
B :

• In a theoretical setting where we know the true λ(w∗), our estimator λ̂(w∗) recovers the correct ordinality
between w∗ with different degeneracy (Figure 1).

• In a feedforward ReLU network with 1.9m parameters trained on MNIST, we show that λ̂(w∗) is smaller
when w∗ is optimised by entropy-SGD (an optimiser which actively seeks more degenerate parameters)
compared to SGD (Figure 2).

Despite the negative connotation of the word “degeneracy”, we emphasise that degeneracy should not be viewed as a
deficient quality of singular models. Rather, we conjecture that the nature of the degeneracy of DNNs might be the
secret sauce behind their state-of-the-art performance on a wide range of tasks. Our proposed measure of degeneracy
could pave the way for a better understanding of the implicit biases induced by the optimisation scheme, the data, etc.

In this paper although we focus mostly on λ̂(w∗) as a measure of degeneracy, we also detail the estimator ν̂β
∗
(w∗) for

the sake of completeness and discuss its experimental results. The main application of the local singular fluctuation is
in connection with phase transitions and will be treated in future work.

Figure 2: Distribution of λ̂(w∗) for minima found by SGD and entropy-SGD in feedforward ReLU network for
MNIST. As expected λ̂(w∗) for entropy-SGD is lower than for SGD since the former actively seeks out more degen-
erate critical points. See Section 10.3 for details.
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2 Learning coefficient and singular fluctuation

In this section we define the (global) learning coefficient λ and (global) singular fluctuation ν. Let W ⊂ Rd be the
compact space of parameters w ∈W . Consider the model-truth-prior triplet

(p(x, y|w), q(x, y), φ(w)), (1)

where q(x, y) = q(y|x)q(x) is the true data-generating mechanism, p(x, y|w) = p(y|x,w)q(x) is the posited model
with parameter w, and φ is a prior on w. We assume the triplet satisfies the so-called fundamental conditions in SLT
(Watanabe, 2009).
Definition 1. A statistical model p(x, y|w) is called regular if it is identifiable, i.e. the parameter to distribution map
w 7→ p(−|w) is one-to-one, and its Fisher information matrix I(w) is everywhere positive definite. We call a model
singular if it is not regular.

Let K(w) be the Kullback-Leibler divergence

K(w) := KL
(
q(y|x) ∥ p(y|x,w)

)
and set

K0 = inf
w∈W

K(w).

The truth is realisable by the model if there exists w0 ∈ W such that q(x, y) = p(y|x,w0)q(x), or equivalently
K0 = 0. We do not assume that our models are regular or that the truth is realisable, but we assume the model-truth-
prior triplet satisfies the more general condition of relative finite variance (Watanabe, 2013). We also assume that
there exists w∗

0 in the interior of W satisfying K(w∗
0) = K0.

Definition 2. The zeta function of the statistical learning system (1) is ζ(z) =
∫
W

(K(w)−K0)
z
φ(w)dw. Let

−λ ∈ R be the largest pole of ζ and m its multiplicity. Then, the learning coefficient and its multiplicity are given by
λ and m respectively.

Let
W0 := {w ∈W : K(w) = K0}

be the set of optimal parameters. When p(y|x,w) is a singular model, W0 is an analytic variety which is in general
positive dimensional (not a collection of isolated points). As long as φ > 0 on W0 the learning coefficient λ is equal
to a birational invariant of W0 known in algebraic geometry as the Real Log Canonical Threshold (RLCT). We will
always assume this is the case, and now recall how λ is described geometrically.

With Wϵ = {w ∈ W : K(w) −K0 ≤ ϵ} for sufficiently small ϵ, resolution of singularities (Hironaka, 1964) gives
us the existence of a birational proper map g : M → Wϵ which monomializes K(w) − K0 in the following sense,
described precisely in (Watanabe, 2009, Theorem 6.5): there are local coordinate charts Mα covering g−1(W0) with
coordinates u such that the reparameterisation w = g(u) puts K(w)−K0 and φ(w)dw into normal crossing form

K(g(u))−K0 = u2k1
1 . . . u2kd

d (2)

|g′(u)| = b(u)uh1
1 . . . uhd

d (3)

φ(w)dw = φ(g(u))|g′(u)|du (4)

for some positive smooth function b(u). The (global) RLCT of K(w) − K0 is independent of the (non-unique)
resolution map g, but may be computed as (Watanabe, 2009, Definition 6.4)

λ = min
α

min
j=1...d

hj + 1

2kj
. (5)

For P ∈W0 there exist coordinate charts Mα∗ such that g(0) = P and (2), (3) hold. The local RLCT of K(w)−K0

at P is then (Watanabe, 2009, Definition 2.7)

λ(P ) = min
α∗

min
j=1...d

hj + 1

2kj
. (6)

The global RLCT λ is the infimum over W0 of all the local RLCTs λ(P ). In regular models, all local RLCTs are d/2
and hence the global λ = d/2 and m = 1, see (Watanabe, 2009, Remark 1.15).

Next we introduce the singular fluctuation νβ using a characterisation that is particularly accessible and relates well to
our local estimator later in Section 8. See (Watanabe, 2009, Ch. 5, 6) for alternative characterisations of νβ . Given
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an i.i.d. dataset Dn = {(xi, yi)}i=1...n of size n generated from the true distribution q(x, y), the functional variance
is defined as

V β
n :=

n∑
i=1

{
Eβ
w[log p(yi|xi, w)

2]− (Eβ
w[log p(yi|xi, w)])

2
}

(7)

where
Eβ
w[f(w)] :=

∫
f(w)pβ(w|Dn) dw

denotes expectation of f(w) with respect to pβ(w|Dn), the tempered posterior distribution at inverse temperature β
introduced later in (10).

Let EDn
denote the expectation over the training datasets Dn. By (Watanabe, 2009, Theorem 6.10), the expected

functional variance converges to a constant:

lim
n→∞

EDn
[V β

n ] =
2

β
νβ (8)

Here νβ is known as the singular fluctuation. Note that ν depends on β though we often suppress the dependency
for succinctness.

We have defined the learning coefficient λ and singular fluctuation νβ for a model-truth-prior triplet (p, q, φ). Con-
ditions under which their local counterparts, λ(w∗) and ν(w∗), are well-defined quantities are laid out in Section 6.
In the meantime we build up to these local quantities by explaining their genesis from the free energy and local free
energy formulas.

3 Free energy

In order to recapitulate the role of the learning coefficient as a measure of model complexity, we begin by reviewing
the relationship between the free energy and the Bayesian information criterion for model selection. This will set the
stage for comparing regions of parameter space which is itself a form of model selection governed by the local free
energy, introduced in Section 6.

To begin, let Ln be the empirical negative log likelihood function

Ln(w) = −
1

n

∑
i

log p(yi|xi, w). (9)

The posterior distribution at inverse temperature β is

pβ(w|Dn) =
1

Zβ
n

exp{−nβLn(w)}φ(w), (10)

where
Zβ
n =

∫
exp{−nβLn(w)}φ(w) dw

is the normalising constant. We drop the superscript β in Zβ
n to denote the normalising constant at inverse temperature

β = 1. The quantity Zn is also known as the model evidence or marginal likelihood. The free energy is defined as

Fn = − logZn.

Historically, the free energy has occupied an important role in model selection. Recall, in regular models, the non-
degeneracy assumption allows one to invoke the Laplace approximation for the free energy, see, e.g., Chapter 8 of
(Bleistein and Handelsman, 1986).
Theorem 1 (Laplace Approximation). Let w0 be a unique zero of K(w) with positive-definite Hessian H(w0) =
∇2K(w0) and φ(w) be smooth and non-zero at w0. The free energy has asymptotic expansion in n given by

Fn = nLn(w0) +
d

2
log n− logφ(w0)−

d

2
log(2π) +

1

2
log detH(w0) +OP (1). (11)

The asymptotic in (11) is the basis of the Bayesian Information Criterion (BIC) (Schwarz, 1978), which is equal to the
first two terms:

BIC = nLn(w0) +
d

2
log n.
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Observe that the geometry of K(w) near w0 shows up as a direct parameter count d in the O(log n) term in Fn and
the curvature in the principle directions of the Hessian H only show up in the O(1) term. The meaning of lower order
terms such as those involving curvature of the likelihood has been explored in such works as (Balasubramanian, 1997).

When p(y|x,w) is a singular model, the Laplace approximation is not valid in general. The correct asymptotic
expansion of the free energy for singular models is one of the major theorems of SLT. Given an optimal parameter
w0 ∈W0, we have

Fn = nLn(w0) + λ log n− (m− 1) log log n+OP (1). (12)

See Watanabe (2009, §3) for the full statement and proof. Note that the condition of relative finite variance is used.
When p(y|x,w) is regular, λ = d/2 and m = 1 and so (12) recovers the classic Laplace approximation.

Just as the Laplace approximation is behind the BIC, the asymptotic relation in (12) leads to an idealized information
criterion,

nLn(w0) + λ log n,

in which the learning coefficient λ plays the role of d
2 in the BIC as a measure of model complexity. In singular models

it may be that λ≪ d/2.

In contrast to the dimension d, the learning coefficient λ is not so readily apparent. It is difficult to derive analytically
and so we must turn to computational alternatives. Theorem 4 of (Watanabe, 2013) proposes a practically useful
information criterion known as the widely applicable Bayesian information criterion (WBIC),

WBIC := Eβ∗

w [nLn(w)],

where
β∗ = 1/ log n.

The WBIC is a good estimator of Fn in the sense that the first two main terms of the WBIC are equal to those of Fn

in (12):
WBIC = nLn(w0) + λ log n+ oP (log n).

Note that WBIC only requires posterior sampling at a single inverse temperature as opposed to other computational
methods for approximating the model evidence, for example via thermodynamic integration (Friel and Pettitt, 2008).

4 Bridging regular and singular models via minimally singular models

This section aims to build intuition by providing a bridge between the familiar notion of regular models and general
singular models by studying some familiar kinds of degeneracy. As we discussed in Section 3, Laplace approximation
is an oft-used tool to characterize asymptotic behaviors for regular models, in which the set of global minima W0 of
L(w) consists of just one non-degenerate critical point.

There is a slightly more general class of non-identifiable models in which the set of global minima W0 of the expected
negative log-likelihood L(w) consists of (possibly multiple) non-degenerate critical points (making W0 necessarily
a discrete set of points and L(w) a Morse function near W0). In these cases Laplace approximation can be applied
individually to each w∗ ∈W0. This results in a local version of (11)

Fn(Bγ(w
∗)) = nLn(w

∗) +
d

2
log n+

1

2
log detH(w∗) +OP (1),

where Bγ(w
∗) denotes a neighbourhood of w∗ with radius γ > 0, see (16). For w∗ with similar likelihood, hence

similar Ln(w
∗), the next order term that distinguishes their posterior likelihood is related to their local curvature

controlled by the Hessian of the log-likelihood H(w∗). One might call this the most benign form of degeneracy in a
statistical model.

Another familiar form of degeneracy arises when W0 is a smooth submanifold of the parameter space but is non-
degenerate in directions normal to W0: for w∗ ∈W0, the Hessian of L(w) restricted to the normal space of W0 ⊂W
is a non-singular matrix. We term this kind of model minimally singular. While we cannot apply the standard
Laplace approximation in this setting, we can invoke a similar result in the form of Morse-Bott Lemma (Banyaga and
Hurtubise, 2004), adapted here for local minima only:
Theorem 2. Let f : W → R be a smooth function of the d-manifold W and let W0 ⊂ W the set of global minima
which we assume to be a smooth submanifold. Assume that f is a Morse-Bott function in a neighbourhood of W0,
meaning the Hessian Hp(f) for any p ∈ W0 restricted to the normal space NpW0 is non-degenerate. Let C be a
k-dimensional connected component of W0. Then, for any p ∈ C, there exist a smooth chart centred there, ϕ : U →
Rk × Rd−k such that,
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• ϕ(U ∩W0) = {(x, y) ∈ Rk × Rd−k : y = 0}

• f ◦ ϕ−1(x, y) = f(W0) + y21 + y22 + · · ·+ y2d′

where d′ = codim(C) = d− k.

Notice that, if d′ = d, making k = 0, we recover the case where W0 is a discrete set of non-degenerate critical points
described above, i.e. f is just a Morse function. Using the local chart afforded by the theorem, for w∗ ∈ C with
codim(C) = d′, we have

− log

∫
Bγ(w∗)

e−nL(w)φ(w)dw

= − log

∫
Bγ(w∗)

e−nL(w∗)e−n
∑d′

j=1 y2
jϕ(x, y)dydx

= nL(w∗) +
d′

2
log n+O(1)

where ϕ(x, y) > 0 is some positive smooth function and we have invoked the usual Laplace approximation on the inner
y-integral. By Jensen’s inequality, this gives us an upper bound on the expected local free energy EDnFn(Bγ(w

∗))
which is in fact an asymptotic equality for models satisfying the fundamental conditions of SLT (Watanabe, 2009,
Chapter 6).

This result means that, in minimally singular models, the posterior will preferentially concentrate near neighbourhoods
of optimal parameters w∗ that have low effective dimension d′. Unlike the previous setting where d′ = d everywhere
on W0, the “energy-entropy competition” for minimally singular models plays out by seeking lower effective dimen-
sion first before selecting on the basis of local curvature.

For general singular models, there are no obvious generalisations of the Laplace method and one should instead apply
resolution of singularities. Furthermore, the notion of “effective dimension” is no longer really appropriate, since the
dimension of the normal bundle is not defined at a point p ∈ W0 where W0 is not a submanifold. Instead we need to
switch to talking about degeneracy and SLT posits that the learning coefficient λ(w∗) is the correct measure of model
degeneracy near w∗.

One important way such degeneracy could arise is if the model admits continuous symmetry. In general, more
symmetric solution w∗ (e.g. locally admits actions of a high dimensional Lie group) would be preferred by the
Bayesian posterior as it would result in w∗ belonging to a low codimension, d′, neighbourhood of solutions and
leading to a tighter upper bound of the learning coefficient, λ ≤ d′/2.

5 Comparing degeneracy in an example

To motivate the local free energy in the next section, we examine a toy example in which the behaviour of the posterior
in two regions of parameter space is distinguished by their local learning coefficients, to be rigorously defined in
Section 6. This will illustrate why λ(w∗) is a measure of degeneracy of the region around w∗, and how the degeneracies
that arise in singular models can be more complex than just the number of free parameters (flat directions).

In this section it will be helpful to write the posterior distribution in terms of Kn(w), the empirical counterpart to
K(w), given by

Kn(w) :=
1

n

n∑
i=1

[log q(yi|xi)− log p(yi|xi, w)]. (13)

It is easy to see that the posterior distribution in (10) is equivalently given by

p(w|Dn) =
1

Z̄n
exp{−nβKn(w)}φ(w). (14)

Note that the normalising constant Z̄n in (14) differs from Zn in (10) by a constant and thus the distinction between
the two is immaterial to the subsequent asymptotic analysis.

We make one final simplifying step. For building theoretical intuition, we consider the stylised posterior

p(w|D∞) ∝ exp{−nK(w)}φ(w)

6
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which depends on n but with the stochasticity in Kn removed and replaced by the deterministic K. Let

Z̄n,K =

∫
exp{−nK(w)}φ(w) dw

be the normalising constant of the stylised posterior. We will study it in place of Z̄n which is studied in place of Zn.

Our toy example is a model with parameter space W ⊆ R2 and chosen so that the KL divergence is
K(w1, w2) = (w1 − 1)2(w2

1 + w2
2)

4. (15)
The optimal parameter set has two components: W0 = U ∪V where U is the line w1 = 1 and V the point at the origin.
Let Uγ , Vγ be sufficiently small neighbourhoods of U, V respectively. These are the regions we seek to compare, both
in terms of the concentration of the Bayesian posterior as n → ∞ and in terms of degeneracy of the critical points of
K they contain.

Define the restricted evidence and free energy of the stylised posterior to be

Z̄n,K(Uγ) =

∫
Uγ

exp{−nK(w1, w2)}dw1dw2

F̄n,K(Uγ) = − log Z̄n,K(Uϵ),

and similarly for Z̄n,K(Vγ) and F̄n,K(Vγ). Note that we take a constant prior on W . This contributes constant terms
related to the volume of Uγ , Vγ (larger regions can have more probability mass simply because they are larger) which
become irrelevant for large enough n. To answer the question “in which of the two regions Uγ , Vγ does the stylised
posterior concentrate” is to compare Z̄n,K(Uγ), Z̄n,K(Vγ) or equivalently the free energies.

Noticing that K is non-degenerate in the w1-direction normal to the line U (that is, K has non-vanishing second-order
w1-partial derivative) we can invoke Laplace approximation to prove that

F̄n,K(Uγ) =
1
2 log n+O(1).

Every point in U is a degenerate critical point of K (the Hessian has zero eigenvalues) but this degeneracy is of a mild
form of what we referred to as minimally singular in Section 4: the function K has a local expression as a sum of
squares that is less than full (i.e. the expression uses d′ < d coordinates).

We now turn our attention to V . Analysis via Laplace approximation must fail for V : if it were valid then since
codim(V ) = 2, F̄n,K(Vγ) would have to behave like log n+O(1), suggesting a much lower probability mass near V
compared to U . However, contrary to this expectation, Figure 3 shows that the stylised posterior will asymptotically
concentrate in a small neighbourhood of V instead of U . Indeed, observe that K ≈ r8 + const in polar coordinates
near the origin, making it a degenerate critical point for K(w). The correct asymptotic turns out to be

F̄n,K(Vγ) =
1
4 log n+O(1),

which is significantly lower than the behaviour suggested by a naive dimension count.

6 Local quantities

Building on the example from the previous section we define the local free energy as a measure of posterior concen-
tration in a parameter region of interest, and explain how the local learning coefficient helps us to reason about this
concentration asymptotically as n→∞.

To compare the concentration of the Bayesian posterior near w∗ with the concentration near other parameters, we
would like to understand the quantity

Zn(Bγ(w
∗)) =

∫
Bγ(w∗)

exp{−nLn(w)}φ(w) dw

with Bγ(w
∗) denoting a neighbourhood of w∗ of radius γ for some γ > 0, and the associated local free energy

Fn(Bγ(w
∗)) = − logZn(Bγ(w

∗)) . (16)
If we set

vol(γ,w∗) =

∫
Bγ(w∗)

φ(w)dw ,

φ̄(w) =
1

vol(γ,w∗)
φ(w)

then we can form the local triplet (p, q, φ̄) with parameter space Bγ(w
∗). Let L(w) be the theoretical counterpart to

Ln(w), i.e., L(w) = −Eq(x,y) log p(y|x,w). Our hypotheses on w∗ are as follows:

7
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Figure 3: The unnormalized density exp{−nK(w1, w2)} for K in (15) visualised at n = 5 and n = 100. The 0-
dimensional component of W0 (V , learning coefficient 1

4 ) dominates the 1-dimensional line (U , learning coefficient
1
2 ) in the large n limit due to it being more degenerate.

• L(w∗) ≤ L(P ) if P ∈ Bγ(w
∗).

• λ(w∗) ≤ λ(P ) if P ∈ Bγ(w
∗) and L(P ) = L(w∗).

• The local triplet satisfies relative finite variance.

The first two hypotheses say that w∗ is a minimum of L in its neighbourhood and w∗ is at least as degenerate as any
nearby minimiser. Note that the KL divergence for this triplet is just the restriction of K : W → R to Bγ(w

∗), but the
local triplet has its own set of optimal parameters

W0(w
∗, γ) = {w ∈ Bγ(w

∗) : L(w) = L(w∗)} . (17)

Applying the definitions of Section 2 and results of Section 3 to the local triplet (replacing W0 there by W0(w
∗, γ)),

the asymptotic expansion of (12) gives

Fn(Bγ(w
∗)) = nLn(w

∗) + λ(w∗) log n− (m(w∗)− 1) log log n+OP (1), (18)

where the difference between φ, φ̄ contributes a summand log vol(γ,w∗) to the constant term. This explains why we
can consider λ(w∗) as a local learning coefficient, following the ideas sketched in (Watanabe, 2009, Section 7.6).

Recall that the posterior concentration at a given neighbourhood is directly revealed by their local free energy. Equation
(18) in turns shows that there is a competition between energy, nLn(w

∗), and entropy, λ(w∗). Consequently, in
comparing the degeneracy between points w∗

A and w∗
B , it is important to remember that λ(w∗

A) < λ(w∗
B) is only

evidence of greater posterior concentration near w∗
A if the two points are in the same level set of L(w).

7 Estimation of local learning coefficient

The local free energy in (16) is not easy to compute, so we introduce a proxy which we will estimate instead. Specifi-
cally, we introduce a localising Gaussian prior that acts as a surrogate for enforcing the domain of integration. Let

φγ(w) ∝ exp{−γ

2
||w||22}

be a Gaussian prior centred at the origin with scale parameter γ. Define the tempered local posterior centred at w∗ ∈W
with scale γ and inverse temperature β to be

pβ(w|Dn, w
∗, γ) :=

exp{−nβLn(w)}φγ(w − w∗)

Zβ
n(w∗, γ)

(19)

where
Zβ
n(w

∗, γ) =

∫
exp{−nβLn(w)}φγ(w − w∗) dw

is the normalising constant. Again we suppress β and write Zn(w
∗, γ) when β = 1. We shall treat

Fn(w
∗, γ) := − logZn(w

∗, γ)

8
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as a proxy for Fn(Bγ(w
∗)). In our estimation procedure, we assume that w∗ may be replaced by its empirical estimate

ŵ∗
n := argmin

w∈Bγ(w∗)

Ln(w) .

Once we have an estimator F̂n(w
∗, γ) of Fn(w

∗, γ), we discard lower order terms in (18) and manipulate to obtain
the following estimator of λ(w∗):

F̂n(w
∗, γ)− nLn(ŵ

∗
n)

log n
.

To estimate Fn(w
∗, γ) we propose employing a local version of the WBIC leading to the local learning coefficient

estimate

λ̂(w∗) :=
Eβ∗

w|ŵ∗
n,γ

[nLn(w)]− nLn(ŵ
∗
n)

log n
(20)

where
β∗ = 1

logn .

Here we have written the expectation of a function f(w) with respect to the tempered local posterior in (19) as

Eβ
w|w∗,γ [f(w)] :=

∫
f(w)pβ(w|Dn, w

∗, γ) dw.

Better estimates than (20) are conceivable, e.g., via the techniques set out in Corollary 3 of (Watanabe, 2013), at the
cost of doing posterior sampling at multiple inverse temperatures β.

7.1 SGLD-based WBIC

Calculating the local WBIC in (20), Eβ∗

w|ŵ∗
n,γ

[nLn(w)], requires samples from the posterior in (19) localised at ŵ∗
n at

inverse temperature β∗ = 1/ log n. The standard WBIC has previously been deployed on small singular models where
careful MCMC can be applied (Friel et al., 2017; Imai, 2019). Because our interest is in modern neural networks,
we need scalable sampling methods. For this purpose, we chose to employ SGLD (Welling and Teh, 2011) for its
simplicity and speed. The SGLD updates for sampling (19) are given by

∆wt =
ϵ

2

(
βn

m

m∑
i=1

∇ log p(yli |xli , wt) + γ(w∗ − wt)

)
+N(0, ϵ)

where the log likelihood term is calculated over randomly sampled minibatch of m samples {(xli , yli)}mi=1, and ϵ
controls the injected Gaussian noise. We use T to denote the total number of SGLD iterations.

8 Estimation of local singular fluctuation

The definition of νβ in (8) suggests for its estimator,

ν̂β =
β

2
V β
n .

Adapting the functional variance estimator for local singular fluctuation estimation is straightforward. In (7), we
simply replace Eβ

w with Eβ
w|w∗,γ to arrive at V β∗

n (w∗). Let us call the resulting estimate of the local singular fluctuation
ν̂β(w∗).

Although the case β = 1 is of particular interest in Bayesian learning (see Appendix A), our local learning coefficient
estimates λ̂(w∗) are formed by sampling from the tempered local posterior (19) at inverse temperature β∗ = 1/ log n.
To avoid additional computation, we calculate the local singular fluctuation estimator ν̂β

∗
(w∗). Note that it is possible

to convert the estimate from one inverse temperature to another inverse temperature via Equation 20 in Watanabe
(2013).
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9 Related Work

Measuring model complexity is a long-studied problem in statistics and learning theory. Traditional measures such
as VC dimension and Rademacher complexity are applied to the entire hypothesis class. Other measures such as the
norm-based complexity measure in Liang et al. (2019) and the sensitivity-based complexity measure in Novak et al.
(2018) are applied to a specific hypothesis.

Beyond their intrinsic interest, complexity measures also hold the promise of explaining the generalisation puzzle
(Zhang et al., 2017) in deep learning. The sheer number of complexity measures proposed towards this end prompted
Jiang et al. (2019) to conduct a careful correlation analysis of 40 complexity measures with generalisation. Many of
the investigated measures correlate poorly (and even negatively) with generalisation error.

In this work, we are motivated by the correspondence between Bayesian parameter inference and thermodynamics
which several recent works have noted (Le, 2018; Zhang et al., 2018; LaMont and Wiggins, 2019). Using the free en-
ergy principle, we can understand the extent to which minima with different degrees of degeneracy might be preferred
by the Bayesian posterior. A direct inspiration for our work is Zhang et al. (2018) which proposes log detH(w∗) as a
complexity measure by way of the Laplace approximation in (11). Although correct in spirit, their analysis incorrectly
applies the Laplace approximation which does not hold for singular models, and hence neural networks. Indeed, this
Hessian-based degeneracy measure is often degenerate with determinant zero. Even after scrubbing the nearly-zero
eigenvalues, such a complexity measure cannot capture the type of degeneracy exhibited by singular models, which
we illustrated in Section 5. Furthermore, even if the model were minimally singular, the Hessian contribution to the
free energy is only O(1).

Finally, we briefly discuss concurrent work that measures a quantity related to the global learning coefficient. In Chen
et al. (2023), a measure called the learning capacity is proposed to estimate the complexity of a hypothesis class. The
learning capacity can be viewed as a finite-n version of the learning coefficient; the latter only appears in the n→∞
limit. Chen et al. (2023) is largely interested in the learning capacity as a function of training size n. They discover
the learning capacity saturates at very small and large n with a sharp transition in between.

monomial λ MCMC SGLD

w1
1w

3
2 0.17 0.12 ( 0.04) 0.11 ( 0.07)

w1
1w

2
2 0.25 0.19 ( 0.11) 0.14 ( 0.12)

w0
1w

1
2 0.50 0.41 ( 0.12) 0.45 ( 0.11)

w1
1w

0
2 0.50 0.43 ( 0.12) 0.47 ( 0.13)

(a) Estimates λ̂(w∗) (with standard deviation)

monomial MCMC SGLD

w1
1w

3
2 0.17 ( 0.03) 0.14 ( 0.05)

w1
1w

2
2 0.32 ( 0.16) 0.23 ( 0.09)

w0
1w

1
2 0.50 ( 0.04) 0.54 ( 0.04)

w1
1w

0
2 0.49 ( 0.03) 0.53 ( 0.05)

(b) Estimates ν̂β∗
(w∗) (with standard deviation).

Table 1: Estimates for the normal crossing model-truth-prior triplets described in Section 10.1 using posterior samples
from MCMC or SGLD. The hyperparameters in SGLD are set to batch size m = n, ϵ = 0.0005 and chain length
T = 10, 000. The estimated local learning coefficients correlate well with their true values.

10 Experiments

In this section we first validate the accuracy of the λ̂(w∗) estimator for models that are in normal crossing form. We
observe that λ̂(w∗) does indeed correlate well with the true λ(w∗). Next, we revisit the example in Section 5 to verify
that λ̂(w∗) can distinguish between parameter regions with different degeneracy.

Finally, we examine a feedforward ReLU network trained on the MNIST dataset. Because we do not know the true
critical points corresponding to this model-truth-prior triplet, we shall instead train the network to convergence with
two different stochastic optimisers: SGD with momentum and another optimiser designed to minimise a proxy to local
free energy known as entropy-SGD Chaudhari et al. (2019). As expected, our local learning coefficient estimator can
distinguish the critical points preferred by the two optimisers.

10.1 2D posterior in normal crossing form

Let us study posteriors that are already in normal crossing form as per (2) and (3). The significance and generality of
this form is discussed in Section 2. Specifically we consider a regression model with inputs x sampled from a standard

10
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Gaussian and outputs
y = ρ(w1, w2)x+N(0, σ2)

where
ρ(w1, w2) = wk1

1 wk2
2

is a monomial and σ2 = 1/4 is the variance of the observation noise. We fix the prior to be a uniform prior and
investigate different (k1, k2) ∈ N2.

A synthetic training data set of size n = 1000 is generated where the true parameter is chosen to be w∗ = (0, 0).
It can be shown that, with this setup, K(w) = Cw2k1

1 w2k2
2 for a positive constant C and W0 = {(w1, w2) ∈ R2 :

w1w2 = 0}. In this simple example, we have theoretical knowledge of the true learning coefficient given by λ =
min{1/(2k1), 1/(2k2)}.
Note that in this synthetic setup, there is no need to employ (20) with a plug-in estimate ŵ∗

n since we know the true
critical point w∗. We compare the effects of different posterior sampling methods, SGLD versus MCMC, on the
estimator λ̂(w∗). For MCMC, we employ the No U-Turn Sampler Hoffman and Gelman (2014). The scale parameter
γ in the localising prior of the SGLD sampler is set to 1.0 and chain length T is set to 10 000.

All experiments are repeated 10 times with different RNG seeds which results in different datasets and different
posterior sample paths. Table 1a shows the mean and standard deviation of λ̂(w∗) estimates resulting from SGLD and
MCMC as well as the theoretical λ(w∗). We also display the local singular fluctuation estimates in Table 1b.

Figure 8 shows sample paths taken by SGLD and MCMC for various k1, k2. We see that overall MCMC does indeed
explore the posterior better though SGLD is able to explore the most degenerate direction and hence the SGLD-based
estimate does not suffer for its limited exploration of the posterior. Regarding the effect of γ on the estimate λ̂(w∗),
Figure 9 reveals that the estimate can suffer from overly concentrated localising priors.

10.2 2D posterior with neighbourhoods of different degeneracy

Next, we run experiments that numerically illustrate the theoretical results presented in Section 5. Consider the
regression model

y = ρ(w1, w2)x+N(0, σ2)

with
ρ(w1, w2) = (w1 − 1)(w2

1 + w2
2)

2.

We generate training data of size n = 1000 with noise σ2 = 1/4 and the true parameter is set to be at the origin. This
leads to K(w) in (15). We choose a uniform prior φ.

To estimate λ̂(w∗) for U = {(w1, w2) ∈ R2 : w1 = 1} and V = {(0, 0)}, we respectively set w∗
U = (1.0, 0.3), and

w∗
V = (0.0, 0.0) in (20). The scale parameter γ in the localising prior is chosen to be 0.2. The choice of ϵ and chain

length T are respectively 0.0001 and 5000. We implement full-batch SGLD for this toy example.

The experiment is repeated 500 times. In Figure 1 we can see that, on average, λ̂(w∗
V )) < λ̂(w∗

U ), recovering the
theoretically known order of local degeneracy, λ(w∗

V ) < λ(w∗
U ). Moreover, both λ̂(w∗) distributions concentrate

around their true local learning coefficients.

10.3 MNIST

We fit a two hidden-layer feedforward ReLU network with 1.9m parameters to MNIST using two stochastic optimisers:
SGD and entropy-SGD (Chaudhari et al., 2019). Our interest in entropy-SGD is due to its objective function being
none other than to minimise Fn(w

∗, γ) over w∗. As such we expect that the local minima found by entropy-SGD will
have lower λ̂(w∗).

We obtain multiple (S = 80) training trajectories resulting in a collection of trained weights ŵ1, . . . , ŵS for each
optimiser. The training data remains fixed in this repetition, only the randomness in the stochastic optimiser is being
modded out. We record λ̂(ŵs), ν̂β

∗
(w∗) for s = 1, . . . , S. See Appendix B for complete experimental details. To

save on memory and compute, for this MNIST experiment, we actually calculate and report a mini-batch version of
λ̂(w∗), see details in Appendix C. We have no mini-batch version of ν̂β

∗
(w∗) implemented at present but it should be

tractable.

Figure 2 confirms our expectation that entropy-SGD finds local minima with lower local learning coefficient, i.e.,
entropy-SGD is attracted to more degenerate critical points than SGD. Figure 2 is simply one of the configurations
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Figure 4: Distribution of ν̂β
∗
(w∗) for minima found by SGD and entropy-SGD in feedforward ReLU network for

MNIST. SGD appears to be more attracted to parameter regions where the local posterior is diverse in function space.

Figure 5: Evolution of estimates λ̂(w∗) and ν̂β
∗
(w∗) over training epoch for minima found by SGD and entropy-SGD

in feedforward ReLU network for MNIST. We observe that λ̂(w∗) rises over training and stabilize to specific values.
Both λ̂(w∗) and ν̂β

∗
(w∗) are lower for networks trained with entropy-SGD, throughout training.

in Figure 10 which shows comprehensive results reflecting the effect of γ and chain length T . We see that our
observation about SGD and entropy-SGD are relatively robust to these hyperparamters. Interestingly Figure 2 also
reveals that the local learning coefficient estimate has remarkably low variance over the randomness of the stochastic
optimiser. Finally it is noteworthy that the local learning coefficient estimate of a learned NN model for both stochastic
optimisers is, on average, a tiny percentage of the total number of weights in the NN model: λ̂(w∗) ≈ 1000.

It is also informative to examine the local singular fluctuation estimates. Figure 4 show that the functional variance for
entropy-SGD is lower, in other words, SGD seems to explore parts of parameter space where the local posterior covers
a more diverse range of functions. We see in Figure 5 that both λ̂(w∗) and ν̂β

∗
(w∗) increase with training epoch.

11 Conclusion

We reviewed the two central quantities in Singular Learning Theory, the learning coefficient λ and the singular fluctu-
ation ν. We introduced local versions that are amenable to scalable estimation and of intrinsic interest. In particular,
the local learning coefficient quantifies the degree of degeneracy exhibited by a learned neural network. We have seen
that degeneracy is more than just counting the number of directions in parameter space where the loss does not change.
This is why Hessian-based measures of complexity cannot account for the true nature of degeneracy in singular mod-
els. An exciting direction of future research is to employ the local learning coefficient and local singular fluctuation in
detecting phase transitions and emergent abilities in deep learning models.
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A Bayesian Learning

Much of singular learning theory is concerned with Bayesian learning of singular models. The learning coefficient
and singular fluctuation make important appearances in these results, which we review in this section.

In contrast to point estimation, Bayesian learning proceeds by marginalisation. The full Bayesian learning approach
uses the so-called Bayesian posterior predictive distribution,

pβ(y|x,Dn) =

∫
p(y|x,w)pβ(w|Dn) dw.

We also consider an alternative Bayesian learning method whereby a single draw from the posterior is used as a point
estimate. This is known as Gibbs learning (Watanabe, 2009).

To each of these Bayesian learners, we can associate the generalisation errors

Bg := KL(q(y|x) ∥ pβ(y|x,Dn)) ,

Gg := Eβ
w KL(q(y|x) ∥ p(y|x,w)).

The letters B and G stand for Bayesian and Gibbs learning respectively. These generalisation errors have corresponding
training errors:

Bt := Kn(q(y|x)||pβ(y|x,Dn)) ,

Gt := Eβ
wKn(q(y|x)||p(y|x,w))

where Kn is the empirical KL divergence in (13).

We will use EDn
to denote the expectation over the training datasetsDn. The singular fluctuation ν in (8) characterises

the Bayesian and Gibbs generalisation gaps in the following sense. It was established in (Watanabe, 2010) that the
(expected) Bayes quartet errors, Bg, Bt, Gg, Gt, are determined by λ and ν:

EDn
Bg =

λ+ νβ − ν

nβ
+ o(1/n) ,

EDn
Bt =

λ− νβ − ν

nβ
+ o(1/n) ,

EDnGg =
λ+ νβ

nβ
+ o(1/n) ,

EDn
Gt =

λ− νβ

nβ
+ o(1/n).

It then follows that

EDnBg = EDnBt + 2β(EDnGt − EDnBt) + o(1/n) ,

EDnGg = EDnGt + 2β(EDnGt − EDnBt) + o(1/n).

Watanabe (2010) shows that the singular fluctuation characterises the gaps (EDn
Bg−EDn

Bt) and (EDn
Gg−EDn

Gt)
by showing that

nβ(EDn
Gt − EDn

Bt)→ νβ .

A.1 Local Bayesian learning

We give analogous results to Appendix A for the local posterior predictive distribution,

Eβ
w|w∗,γ [p(y|x,w)].

We assume that w∗ is a local minimum L(w) and investigate a sufficiently small neighbourhood V of w∗ satisfying
the assumptions stated in Section 6. We drop the constant term in the generalisation error Bg to arrive at the test
cross-entropy loss of the local posterior predictive distribution

BLg(w
∗, γ) := −Eq log

(
Eβ
w|w∗,γp(y|x,w)

)
.

If w∗ is a local minimum of L(w) in a γ-neighbourhood, then we can adapt the results in Appendix A to obtain the
expectation of the local Bayes generalisation error

EDn
BLg(w

∗, γ) = L(w∗) + λ(w∗)/n+ o(1/n). (21)
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Note that this decomposes into a bias term L(w∗) and a variance term λ(w∗)/n which dispels the notion that the local
learning coefficient itself determines test error.

Similarly, the test cross-entropy loss corresponding to the local Gibbs learner,

GLg(w
∗, γ) := −Eβ

w|w∗,γEq log p(y|x,w)

admits the following asymptotic relation:

EDnGLg(w
∗, γ) = L(w∗) +

λ(w∗) + ν(w∗)

n
+ o(1/n). (22)

B MNIST Experiments details

In this experiment, we trained a feedforward ReLU network on the MNIST dataset Deng (2012). The dataset consists
of 60000 training samples and 10000 testing samples. The network is designed with 2 hidden layers having sizes
[1024, 1024], and it contains a total of 1863690 parameters.

For training, we employed two different optimizers, SGD and entropy-SGD, minimizing cross-entropy loss. Both
optimizers are set to have learning rate of 0.01, momentum parameter at 0.9 and batch size of 512. SGD is trained
with Nesterov look-ahead gradient estimator. The number of samples L used by entropy-SGD for local free energy
estimation is set to 5. The network is trained for 200 epochs. The number of epochs is chosen so that the classification
error rate on the training set falls below 10−4.

After each epoch of training, we run local SGLD sampling to compute λ̂(w∗) and ν̂β
∗
(w∗) for w∗ set to the network

parameter reached at that epoch. The localizing prior scale parameter γ is set to 100.0. The hyperparameters used for
SGLD approximate posterior sampling are as follows: ϵ is set to 10−5, the number of steps taken in an SGLD chain
is set to 400 and the minibatch size is taken to be the same as the batch size used for both SGD and entropy-SGD
training above, i.e. 512. We repeat each SGLD chain 4 times to compute the variance of estimated quantities and also
as a diagnostic tool, a proxy for estimation stability. The reported ν̂β

∗
(w∗) is the average value of the estimates from

the 4 independent chains.

The experiments are repeated for 80 RNG seeds.

Figure 6 shows the training and testing error curves over training epochs for both optimizers.

Figure 6: Classification error rate for training (left axis, + marker) and testing (right axis, triangle marker) datasets for
both optimizers: SGD in black and entropy-SGD in blue. Note the log-scale for both axis on which zero error cannot
be shown. The training cutoff of 200 epoch is chosen so that both optimizers can reach training error < 10−4.
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C Pseudocode and discussion for estimation algorithms

Full details of the algorithms used for λ̂(w∗) and ν̂β
∗
(w∗) estimation are given in Algorithms 1 and 2 respectively.

Code is available at https://github.com/edmundlth/scalable_learning_coefficient_with_sgld/tree/
v1.0.

Note that for estimation of λ̂(w∗) in MNIST, we use a minibatch estimate Lm(w) of the full training data negative
log-likelihood Ln(w). This vastly improves memory and compute efficiency. However, for MNIST ν̂β

∗
(w∗), current

implementation requires accumulation of the log-likelihood log p(yi | xi, w) at every data point (xi, yi) in the full
datasetDn for every SGLD sampled parameter w. While this is not an issue for small datasets like MNIST, alternative
more efficient algorithms for calculating variance are required for further scalability.

For experiments involving synthetic data, we set mini-batch size m = n, i.e. full-batch.

C.1 Observed issues and possible improvement in future work

Based on observations of SGLD sampling in MNIST and on toy potentials, there are a few ways that SGLD sampling
can fail to produce good λ̂(w∗) estimates:

• Large ϵ: There seems to be a threshold ϵ above which, if the SGLD trajectory encounters a large value of
Lm(w), this causes a runaway effect where subsequent Lm(w) and ∇wLm(w) values become larger and
eventually exceed machine floating point number upper limits.

• Negative λ̂(w∗): This happens when w∗ fails to be a local minimum or when the SGLD trajectory wanders
to a lower potential area causing the numerator in (20) to be negative. This could be alleviated by shorter
chain length (risks under-exploration) or larger restoring force γ (risks the issue discussed below).

• Large γ: As shown in Figure 9, an overly concentrated localising prior (γ too large) can overwhelm the
gradient signal coming from the log-likelihood. This can result in samples that are different from the posterior,
destroying SGLD’s sensitivity to the local geometry.

There are various possible future improvements.

• Incorporate HMC / NUTS: Currently, all SGLD steps are taken to be approximate posterior samples. To
produce better coverage of the local posterior, we could incorporate ideas from Hamiltonian Monte Carlo
samplers with added Gaussian noise where samples are generated with better exploration of the local potential
landscape. Furthermore, automatic tuning of hyperparameters in the NUTS variant of the sampler could
resolve the issues with the current sampler’s sensitivity to hyperparameters.

• Accept-reject steps: Having an accept-reject step could help produce more reliable samples at the cost of
longer runtime. Furthermore, this could resolve the issue mentioned above regarding samples drawn with
extremely low likelihood.

• Multi-temperature posterior samples: The paper which introduced the WBIC Watanabe (2013) proposed
the use of sampling from tempered posteriors at multiple inverse temperatures, e.g. β1, β2, and estimating
the local coefficient by

λ̂ =
Eβ1
w [nLn(w)]− Eβ2

w [nLn(w)]
1
β1
− 1

β2

.

This requires running multiple sampling chains and thus increasing the compute budget. With careful han-
dling of potential numerical overflow issue, one can potentially use the formula below, pointed out in the
same paper, to convert samples from one chain to be samples from another temperature:

Eβ2
w [f(w)] =

Eβ1
w [f(w)e(β2−β1)nLn(w)]

Eβ1
w [e(β2−β1)nLn(w)]

.

• Better diagnostic tools: We can incorporate better diagnostic tools in addition to checking standard deviation
of the estimated quantities across multiple independent SGLD chains. For example, tracking acceptance
rate at accept-reject steps and tracking the norms of ∇wLm(w) could help with detecting failures in SGLD
exploration.

17

https://github.com/edmundlth/scalable_learning_coefficient_with_sgld/tree/v1.0
https://github.com/edmundlth/scalable_learning_coefficient_with_sgld/tree/v1.0


Quantifying degeneracy in singular models via the learning coefficient

Algorithm 1 computing λ̂(w∗)

Input: initialisation point w∗, scale γ, SGLD ϵ, SGLD chain length T , SGLD minibatch m, training data Dn =
{(xi, yi)}i=1,...,n, and averaged log-likelihood function for w ∈ Rd and arbitrary batch D of data:

logL(D,w) =
1

|D|
∑

(xi,yi)∈D

log p(yi | xi, w)

Output: λ̂(w∗)

1: w ← w∗ ▷ Initialise at the given parameter
2: arrayLogL← [ ]
3: for t = 1 . . . T do
4: B ← random minibatch of size m
5: append logL(B,w) to arrayLogL
6: η ∼ N(0, ϵ) ▷ d-dimensional Gaussian, variance ϵ
7: ∆w ← ϵ

2 [γ(w
∗ − w) + nβ∗∇wlogL(B,w)] + η

8: w ← w +∆w
9: end for

10: ŴBIC← −n ·Mean(arrayLogL)
11: nLn(w

∗)← −n · logL(Dn, w
∗)

12: λ̂(w∗)← ŴBIC−nLn(w
∗)

logn

13: return λ̂(w∗)

Algorithm 2 computing ν̂β
∗
(w∗)

Input: Same as Algorithm 1
Output: ν̂β

∗
(w∗)

1: w ← w∗ ▷ Initialise at given parameter
2: M ← 0
3: arrayLogL← zeros(n) ▷ array of zeros of size n
4: sqArrayLogL← zeros(n) ▷ array of zeros of size n
5: for t = 1 . . . T do
6: M ←M + 1
7: for i = 1 . . . n do
8: x← logL((xi, yi), w)
9: arrayLogLi ← arrayLogLi + x

10: sqArrayLogLi ← sqArrayLogLi + x2

11: end for
12: B ← random minibatch of size m
13: append logL(B,w) to arrayLogL
14: η ∼ N(0, ϵ), ▷ d-dimensional Gaussian noise
15: ∆w ← ϵ

2 [γ(w
∗ − w) + nβ∗∇wlogL(B,w)] + η

16: w ← w +∆w
17: end for
18: Variancei ← 1

M

∑M
i=1 sqArrayLogLi − arrayLogL2

i

19: ν̂β
∗
(w∗)← β∗

2

∑n
i=1 Variancei

20: return ν̂β
∗
(w∗)

D More normal crossing posteriors

In Section 10.1 we used models in normal crossing form to test the sensitivity of SGLD samples to local geometry.
In this appendix we extend this analysis to a more significant test by incorporating varying priors. This requires some
slight deviations from the theoretical setting of the main text which we now explain.

Note that in our definition of the local learning coefficient λ(w∗) we introduced a local posterior (19) with a prior
contribution φγ(w − w∗) that ignores the prior φ̄ of the local triplet from Section 6. The justification for this is
that, provided φ̄ > 0 at w∗ which is generally true in our applications, the prior contributes only O(1) terms to the
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monomial prior λ MCMC SGLD (ϵ = 0.0001) SGLD (ϵ = 0.0005)
λ̂ ν̂β

∗
λ̂ ν̂β

∗
λ̂ ν̂β

∗

mean std mean std mean std mean std mean std mean std

w1
1w

3
2 w0

1w
0
2 0.17 0.12 0.04 0.17 0.03 0.10 0.09 0.11 0.07 0.11 0.07 0.14 0.05

w1
1w

3
2 w1

1w
0
2 0.17 0.17 0.01 0.17 0.01 0.14 0.10 0.14 0.07 0.16 0.05 0.18 0.04

w1
1w

2
2 w0

1w
0
2 0.25 0.19 0.11 0.32 0.16 0.10 0.10 0.16 0.12 0.14 0.12 0.23 0.09

w2
1w

3
2 w0

1w
4
2 0.25 0.17 0.13 0.17 0.05 0.30 0.20 0.12 0.04 0.27 0.07 0.14 0.03

w3
1w

1
2 w1

1w
1
2 0.33 0.34 0.04 0.30 0.04 0.29 0.16 0.22 0.16 0.28 0.07 0.29 0.09

w0
1w

1
2 w0

1w
0
2 0.50 0.41 0.12 0.50 0.04 0.42 0.13 0.51 0.03 0.45 0.11 0.54 0.04

w1
1w

0
2 w0

1w
0
2 0.50 0.43 0.12 0.49 0.03 0.45 0.14 0.50 0.05 0.47 0.13 0.53 0.05

w1
1w

1
2 w0

1w
0
2 0.50 0.33 0.15 0.44 0.04 0.29 0.18 0.40 0.12 0.32 0.14 0.42 0.06

w3
1w

1
2 w3

1w
2
2 0.67 0.58 0.29 0.45 0.28 0.67 0.22 0.19 0.08 0.63 0.23 0.29 0.14

w2
1w

1
2 w2

1w
2
2 0.75 0.79 0.16 0.26 0.18 0.71 0.23 0.25 0.13 0.66 0.17 0.27 0.11

w4
1w

1
2 w6

1w
3
2 0.88 0.76 0.46 0.44 0.30 0.77 0.33 0.22 0.06 0.81 0.30 0.23 0.06

w1
1w

1
2 w1

1w
1
2 1.00 0.80 0.15 0.83 0.15 0.75 0.25 0.75 0.25 0.92 0.22 1.09 0.32

Table 2: Estimates λ̂(w∗) and ν̂β
∗
(w∗) (with standard deviation) for the integrals discussed in Appendix D, using

posterior samples from MCMC or SGLD. The hyperparameters of SGLD are set to batch size m = n, chain length
T = 10, 000 and ϵ set to values indicate in the column headers. The estimated local learning coefficients correlate
well with their true values. See Figure 7 for accompanying visualisation. Note that this table is a superset of table 1a,
where the uniform prior is represented by the case where the prior monomial is w0

1w
0
2 .

asymptotic (18). However, in order to test the ability of SGLD sampling to reproduce known theoretical values of λ
it is also interesting to consider cases where the prior vanishes at w∗ to some order. This is relevant because of the
normal form discussed in Section 2.

We fix (k1, k2), (h1, h2) ∈ N2 and test the ability of SGLD sampling to discover the log n coefficient in the asymptotic
expansion of

− log

∫
exp(−nCw2k1

1 w2k2
2 )|wh1

1 wh2
2 |dw1dw2 (23)

for some positive constant C whose actual value is inconsequential. The theoretical value of the coefficient is given
by λ = min{h1+1

2k1
, h2+1

2k2
}.

To this end, we consider the parameter space [−5, 5]2 equipped with a uniform prior, effectively setting b = 1 in (3).
Let the input x be sampled from a standard Gaussian and output y be modelled y = ρ(w1, w2)x + N(0, σ2) where
ρ(w1, w2) = wk1

1 wk2
2 is a monomial and σ2 = 1/4 is the variance of the observation noise. A synthetic training data

set of size n = 1000 is generated where the true parameter is chosen to be w∗ = (0, 0). This is constructed so that
K(w) = Cw2k1

1 w2k2
2 for some positive constant C and W0 = {(w1, w2) ∈ R2 : w1w2 = 0}. We choose a prior in

normal crossing form, φ(w1, w2) ∝ |wh1
1 wh2

2 | supported on [−5, 5]2. The stylised posterior is therefore

p(w | D∞) ∝ exp(−nCw2k1
1 w2k2

2 )|wh1
1 wh2

2 |.

The only change we need to make to methodology of Section 10.1 is to adjust the SGLD update from Section 7.1 to

∆wt =
ϵ

2

(
β∗

n∑
i=1

∇ log p(yi|xi, wt)

+∇ log |wh
t |+ γ(w∗ − wt)

)
+N(0, ϵ)

where if wt = (wt,1, wt,2) then |wh
t | = |w

h1
t,1w

h2
t,2|. All other experimental details are as in Section 10.1. The trend of

λ̂ vs λ values are shown in Figure 7. The full data can be found in Table 2.
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Figure 7: As a companion visualisation to Table 2, we plot λ̂(w∗) against λ(w∗) for the MCMC and SGLD with two
choices of ϵ.

Figure 8: Additional figure for Section 10.1. Sampling paths for stylised posterior with K(w1, w2) = w2k1
1 w2k2

2 for
various combination of (k1, k2). Left set: SGLD, right set: MCMC

E Additional figures

Figures 8, 9, and 10 are additional figures for the experiments in Section 10.
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Figure 9: Additional figure for Section 10.1. These sample paths illustrates the role of the scale parameter γ for SGLD
with the same set up in Figure 8. For overly small γ such as the those on the left figure (note the scale on axes) could
result in trajectories that wander far from w∗. This could cause issue when the trajectory visits neighbourhood with
different loss and degeneracy. On the other hand, a large γ such as those on the right figure would cause the localising
prior to dominate signals from the likelihood. Left: γ = 0.0001. Middle: γ = 1. Right: γ = 10000.
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Figure 10: Additional figure for Section 10.3. These boxplots show the estimates λ̂(w∗) with different SGLD hyperpa-
rameters: γ = 10, 100, 1000 and SGLD chain length T = 100, 250, 400, 600, 800, 1000. The hyperparameters should
be chosen so that the SGLD trajectory sufficiently explores the neighbourhood around w∗ without being dominated by
the localising Gaussian prior controlled by γ. The chain length T should ideally be as long as possible and the figure
show that a chain length of 100 appears to be insufficient. With increasing chain length, λ̂(w∗) trends upwards and
possibly asymptotes towards certain finite value while the variance becomes smaller. The choice of chain length is
thus a balance between compute budget and estimation variance. For γ, observe that overly constraining prior (large
γ) seems to induce similar issues with small chain length.
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