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ABSTRACT

We investigate phase transitions in a Toy Model of Superposition (TMS) (Elhage et al., 2022) using
Singular Learning Theory (SLT). We derive a closed formula for the theoretical loss and, in the case
of two hidden dimensions, discover that regular k-gons are critical points. We present supporting
theory indicating that the local learning coefficient (a geometric invariant) of these k-gons deter-
mines phase transitions in the Bayesian posterior as a function of training sample size. We then
show empirically that the same k-gon critical points also determine the behavior of SGD training.
The picture that emerges adds evidence to the conjecture that the SGD learning trajectory is subject
to a sequential learning mechanism. Specifically, we find that the learning process in TMS, be it
through SGD or Bayesian learning, can be characterized by a journey through parameter space from
regions of high loss and low complexity to regions of low loss and high complexity.

1 Introduction

The apparent simplicity of the Toy Model of Superposition (TMS) proposed in Elhage et al. (2022) conceals a re-
markably intricate phase structure. During training, a plateau in the loss is often followed by a sudden discrete
drop, suggesting some development in the network’s internal structure. To shed light on these transitions and their
significance, this paper examines the dynamical transitions in TMS during SGD training, connecting them to phase
transitions of the Bayesian posterior with respect to sample size n. While the former transitions have been observed
in several recent works in deep learning (Olsson et al., 2022; McGrath et al., 2022; Wei et al., 2022a), their formal
status has remained elusive. In contrast, phase transitions of the Bayesian posterior are mathematically well-defined
in Singular Learning Theory (SLT) (Watanabe, 2009).

Using SLT, we can show formally that the Bayesian posterior is subject to an internal model selection mechanism in
the following sense: the posterior prefers, for small training sample size n, critical points with low complexity but
potentially high loss. The opposite is true for high n where the posterior prefers low loss critical points at the cost
of higher complexity. The measure of complexity here is very specific: it is the local learning coefficient, λ, of the
critical points, first alluded to by Watanabe (2009, §7.6) and clarified recently in Lau et al. (2023). We can think of this
internal model selection as a discrete dynamical process: at various critical sample sizes the posterior concentration
“jumps” from one region Wα of parameter space to another region Wβ . We refer to an event of this kind as a Bayesian
phase transition α → β.

For the TMS model with two hidden dimensions we show that these Bayesian phase transitions actually occur and do
so between phases dominated by weight configurations representing regular polygons (termed here k-gons). The main
result of SLT, the asymptotic expansion of the free energy (Watanabe, 2018), predicts phase transitions as a function of
the loss and local learning coefficient of each phase. For TMS, we are in the fortunate position of being able to derive
theoretically the exact local learning coefficient of the k-gons which are most commonly encountered during MCMC
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Dynamical versus Bayesian Phase Transitions in a Toy Model of Superposition

sampling of the posterior, and thereby verify that the mathematical theory correctly predicts the empirically observed
phases and phase transitions. Altogether, this forms a mathematically well-founded toolkit for reasoning about phase
transitions in the Bayesian posterior of TMS.

Figure 1: In TMS for r = 2 hidden dimensions and c = 6 feature dimensions, SGD seems to perform an internal form
of Occam’s Razor: at the beginning of training, high loss solutions are tolerated because they have low complexity (low
local learning coefficient λ̂) but at the end of training low loss solutions are attractive despite their high complexity
(high local learning coefficient λ̂). The top row shows a visualization of the columns Wi of three snapshots (timestamps
shown as red dots in the loss plot). For more examples and a guide to reading these plots, see Appendix B.

It has been observed empirically in TMS that SGD training also undergoes “phase transitions” (Elhage et al., 2022) in
the sense that we often see steady plateaus in the training (and test) loss separated by sudden transitions, associated
with geometric transformations in the configuration of the columns of the weight matrix. Figure 1 shows a typical
example. We refer to these as dynamical transitions. A striking pattern emerges when we observe the evolution
of the loss and the estimated local learning coefficient, λ̂, over the course of training: we see “opposing staircases”
where each drop in the training and test loss is accompanied by a jump in the (estimated) local complexity measure. In
essence, during the training process, as SGD reduces the loss, it exhibits an increasing tolerance for complex solutions.
On these grounds we propose the Bayesian antecedent hypothesis, which says that these dynamical transtions have
“standing behind them” a Bayesian phase transition.

We begin in Section 3.1 by recalling the TMS, and present a closed form for the population loss in the high sparsity
limit. In our first contribution, we provide a partial classification of critical points of the population loss (Section 3.2)
and document the local learning coefficients of several of these critical points (Section 3.3). In our second contribu-
tion, we experimentally verify that the main phase transition predicted by the internal model selection theory, using
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the theoretically derived local learning coefficients, actually takes place (Section 4.2). In Section 5 we present exper-
imental results on dynamical transitions in TMS. Our third contribution is to show empirically that SGD training
in TMS transitions from high-loss-low-complexity solutions to low-loss-high-complexity solutions, where complex-
ity is measured by the estimated local learning coefficient. This provides support for our proposed relation between
Bayesian and dynamical transitions (Section 5.1).

2 Related work

The TMS problem is, with the nonlinearity removed and varying importance factors, solved by computing principal
components; it has long been understood that the learning dynamics of computing principal components is determined
by a unique global minimum and a hierarchy of saddle points of decreasing loss (Baldi & Hornik, 1989), (Amari, 2016,
§13.1.3). In recent decades an extensive literature has emerged on Deep Linear Networks (DLNs) building on these
results, and applying them to explain phenomena in the development of both natural and artificial neural networks
(Saxe et al., 2019). Under some hypotheses the saddles of a DLN are strict (Kawaguchi, 2016) and all local minima
are global; this suggests a picture of gradient descent dynamics moving through neighbourhoods of saddles of ever-
decreasing index until reaching a global minima. This has been termed “saddle-to-saddle” dynamics by Jacot et al.
(2021). Through careful analysis of training dynamics it has been shown for DLNs that there is a general tendency
of optimization trajectories towards solutions of lower loss and higher “complexity”, which is generally defined in
an ad-hoc way depending on the data distribution (Arora et al., 2018; Li et al., 2020; Eftekhari, 2020; Advani et al.,
2020). For example, it has been shown that gradient-based optimization introduces a form of implicit regularization
towards low-rank solutions in deep matrix factorization (Arora et al., 2019).

Viewing the optimization process as a search for solutions which begins at candidates of low complexity, the tendency
to gradually increase complexity “only when necessary” has been put forward as a potential explanation for the gener-
alization performance of neural networks (Gissin et al., 2019). This intuition is backed by results such as (Gidel et al.,
2019; Saxe et al., 2013), which show that for DLNs the singular values of the model are learned separately at different
rates, with features corresponding to larger singular values learned first.

Outside of the DLN models, saddle-to-saddle dynamics of SGD training have been studied in toy non-linear models
often referred to as single-index or multi-index models. In these models, the target function for input x ∈ Rd is
generated by a non-linear, low dimensional function φ : Rk → R via f(x) = φ(θTx) with θ ∈ Rd×k where k ≪ d.
Single-index refers to k = 1. In a very recent work, Abbe et al. (2023) showed that for a particular multi-index model
with certain restrictions on the input data distribution, SGD follows a saddle-to-saddle dynamic where the learning
process adaptively selects target functions of increasing complexity. Their Figure 1 tells the same story as our Figure
1: at the beginning of training, low complexity solutions are preferred, and the opposite preference develops as training
progresses.

One attempt to put these intuitions in a broader context is (Zhang et al., 2018) which relates the above phenomena to
entropy-energy competition in statistical physics. However this approach suffers from a lack of theoretical justification
due to an incorrect application of the Laplace approximation (Wei et al., 2022b; Lau et al., 2023). The internal model
selection principle (Section 4.1) in singular learning theory provides the correct form of entropy-energy competition
for neural networks and potentially gives a theoretical backing for the intuitions developed in the DLN literature.

3 Toy Model of Superposition

3.1 The TMS Potential

We recall the Toy Model of Superposition (TMS) setup from (Elhage et al., 2022) and derive a closed-form expression
for the population loss in the high sparsity limit. The TMS is an autoencoder with input and output dimension c and
hidden dimension r < c:

f : X ×W −→ Rc ,

f(x,w) = ReLU(WTWx+ b) , (1)

where w = (W, b) ∈ W ⊆ Mr,c(R)×Rc and inputs are taken from x ∈ X = [0, 1]c. We suppose that the (unknown)
true generating mechanism of x is given by the distribution

q(x) =

c∑
i=1

1

c
δx∈Ci

(2)
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where Ci denotes the ith coordinate axis intersected with X . Sampling from q(x) can be described as follows:
uniformly sample a coordinate 1 ≤ i ≤ c and then uniformly sample a length 0 ≤ µ ≤ 1, return µei where ei is the
ith unit vector. This is the high sparsity limit of the TMS input distribution of Elhage et al. (2022), see also Henighan
et al. (2023). We posit the probability model

p(x|w) ∝ exp
(
− 1

2∥x− f(x,w)∥2
)
, (3)

which leads to the expected negative log likelihood −
∫
q(x) log p(x|w) dx. Dropping terms constant with respect to

w we arrive at the population loss function

L(w) =

∫
q(x)∥x− f(x,w)∥2dx .

Given W ∈ Mr,c(R) we denote by W1, . . . ,Wc the columns of W . We set

1. Pi,j = {(W, b) ∈ Mr,c(R)× Rc |Wi ·Wj > 0 and −Wi ·Wj ≤ bi ≤ 0};

2. Pi = {(W, b) ∈ Mr,c(R)× Rc | ∥Wi∥2 > 0 and − ∥Wi∥2 ≤ bi ≤ 0};

3. Qi,j = {(W, b) ∈ Mr,c(R)× Rc | −Wi ·Wj > bi > 0}

For w = (W, b) we set δ(Pi,j) to be 1 if w ∈ Pi,j and 0 otherwise, similarly for δ(Pi), δ(Qi,j).

Lemma 3.1. For w = (W, b) ∈ Mr,c(R)× Rc we have L(w) = 1
3cH(w) where

H(W, b) =

c∑
i=1

δ(bi ≤ 0)H−
i (W, b) + δ(bi > 0)H+

i (W, b) (4)

and

H−
i (W, b) =

∑
j ̸=i

δ(Pi,j)

[
1

Wi ·Wj
(Wi ·Wj + bi)

3

]

+ δ(Pi)

[
b3i

∥Wi∥4
+

b3i
∥Wi∥2

]
+ (1− δ(Pi)) + δ(Pi)Ni

H+
i (W, b) =

∑
j ̸=i

δ(Qi,j)

[
− 1

Wi ·Wj
b3i

]

+
∑
j ̸=i

(1− δ(Qi,j))

[
(Wi ·Wj)

2 + 3(Wi ·Wj)bi + 3b2i

]
+Ni

where Ni = (1− ∥Wi∥2)2 − 3(1− ∥Wi∥2)bi + 3b2i

Proof. See Appendix G.

We refer to H(w) as the TMS potential. While this function is analytic at many of the critical points of relevance
when r = 2, it is not analytic at the 4-gons (see Appendix J).

3.2 k-gon critical points

We prove that various k-gons are critical points for H when r = 2. Recall that w∗ ∈ W is a critical point of H if
∇H|w=w∗ = 0. The function H is clearly O(r)-invariant: if O is an orthogonal matrix then H(OW, b) = H(W, b).
The potential is also invariant to jointly permuting the columns and biases. Due to these generic symmetries we may
without loss of generality assume that the columns Wi of W are ordered anti-clockwise in R2 with zero columns
coming last.

For i = 1, . . . , c, let θi ∈ [0, 2π) denote the angle between nonzero columns Wi and Wi+1, where c + 1 is defined
to be 1. Let li ∈ R≥0 denote ∥Wi∥. In this parametrization W has coordinate (l1, . . . , lc, θ1, . . . , θc, b1, . . . , bc)
with constraint θ1 + · · · + θc = 2π. Since O(2) has dimension 1 any critical point of H is automatically part of
a 1-parameter family. For convenience we refer to a critical point as non-degenerate (resp. minimally singular) if
it has these properties modulo the generic symmetries, that is, in the θ, l, b parametrization. Thus, a critical point is
non-degenerate (resp. minimally singular) if in a local neighbourhood in the θ, l, b parametrization H can be written
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as a full sum of squares with nonzero coefficients (resp. a non-full sum of squares). For background on the minimal
singularity condition see (Wei et al., 2022b, §4) and (Lau et al., 2023, Appendix A).

We call w ∈ M2,c(R)× Rc a standard k-gon for k ∈ {4, 5, 6, 7, 8} and k ≤ c if it has coordinate

l1 = · · · = lk = l∗, lk+1 = · · · = lc = 0 ,

θ1 = · · · = θk−1 = 2π
k , θk + · · ·+ θc =

2π
k ,

b1 = · · · = bk = b∗ , bk+1 < 0 , . . . , bc < 0

where l∗ ∈ R>0, b
∗ ∈ R≤0 are the unique joint solution to −(l∗)2 cos(s 2π

k ) ≤ b∗ where s is the unique integer in
[k4 − 1, k

4 ) (see Theorem H.1). For values of l∗, b∗ see Table A.1. Any parameter of this form is proven to be a critical
point of H in Appendix H. For k as above and 0 ≤ σ ≤ c − k a kσ+-gon is a parameter with the same specification
as the standard k-gon except that σ of the biases bk+1, . . . , bc are equal to 1/(2c) and the rest have arbitrary negative
values. We usually write for example k++ when σ = 2, noting that the k0+-gon is the standard k-gon. These
parameters are proven to be critical points of H when k ≥ 5 in Appendix I and for k = 4 in Appendix J.2.

For k = 4 there are a number of additional “exotic” 4-gons. They are parametrized by 0 ≤ σ ≤ c− k and 0 ≤ ϕ ≤ 4.
A 4σ+,ϕ−-gon has the same specification as the 4σ+-gon, except that a subset of the biases I ⊆ {1, 2, 3, 4} of size
|I| = ϕ are special in the following sense: for any i /∈ I the bias bi has the optimal value bi = b∗ = 0 and the
corresponding length is standard li = l∗ = 1, but if i ∈ I then bi < 0 and li is subject only to the constraint l2i < −bi.
We write for example 4++− for the 42+,1−-gon. These are proven to be critical points of H in Appendix J.2. In
Appendix A, we provide visualizations and a quick guide for recognizing these critical points and their variants.

What we know is the following: the standard k-gon for k = c is a non-degenerate critical point (modulo the generic
symmetries) for c ∈ {5, 6, 7, 8} in the sense that in local coordianates in the l, θ, b-parametrization near the critical
point H can be written as a full sum of squares (Section H.1). For c > 8 and c being a multiple of 4, we conjecture that
the c-gon is a critical point (Section H.2), and we also conjecture that for c > 8 and c not a multiple of 4 there is no
c-gon which is a critical point. When k ∈ {5, 6, 7, 8} and k < c the standard k-gon is minimally singular (Appendix
H.3).

3.3 Local learning coefficients

The local learning coefficient was proposed in Lau et al. (2023) as a general measure to quantify the degeneracy of a
critical point in singular models. Table 1 summarises theoretical local learning coefficients λ and losses L for some
critical points3. For more theoretical values see Table H.2 and Appendix H, and for empirical estimates Appendix K.
In minimally singular cases (including 5, 5+, 6) the local learning coefficient agrees with a simple dimension count
(half the number of normal directions to the level set, which is locally a manifold). This explains why the coefficient
increases by 3

2 as we move from the 5-gon to the 6-gon: this transition fixes one column of W (2 parameters) and the
corresponding entry in the bias b, and so reduces by 3 the number of free parameters, increasing the learning coefficient
by 3

2 (for further discussion see Appendix E).

Critical points Local learning coefficient λ Loss L
5 7 0.06874
5+ 8.5 0.06180
6 8.5 0.04819

Table 1: Critical points and their theoretical λ and L values for the r = 2, c = 6 TMS potential.

4 Bayesian Phase Transitions

In Bayesian statistics there is a fundamental distinction between the learning process for regular models and singular
models. In regular models, as the number of samples n increases, the posterior concentrates at the MAP estimator and
looks increasingly Gaussian. In singular models, which include neural networks, we expect rather that the learning
process is dominated by phase transitions, where at some critical values n ≈ ncr the posterior “jumps” from one
region of parameter space to another.4 This is a universal phenomena in singular learning theory (Watanabe, 2009,
2020).

3The 4-gons are on the boundary of multiple chambers (see Appendix J).
4Another important class of phase transitions, where the posterior jumps as a hyperparameter in the prior or true distribution is

varied, will not be discussed here; see (Watanabe, 2018, §9.4), (Carroll, 2021).
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4.1 Internal Model Selection

We present phase transitions of the Bayesian posterior in SLT building on (Watanabe, 2009, §7.6), (Watanabe,
2018, §9.4), Watanabe (2020). We assume (p(x|w), q(x), φ(w)) is a model-truth-prior triplet with parameter space
W ⊆ Rd satisfying the fundamental conditions of (Watanabe, 2009) and the relative finite variance condition
(Watanabe, 2018). Given a dataset Dn = {x1, . . . , xn}, we define the empirical negative log likelihood function
Ln(w) = − 1

n

∑n
i=1 log p(xi|w). The posterior distribution p(w|Dn) is, up to a normalizing constant, given by

exp(−nLn(w))φ(w). The marginal likelihood is the intractable normalizing constant of the posterior distribution.
The free energy Fn is defined to be the negative log of the marginal likelihood:

Fn = − log

∫
W

exp(−nLn(w))φ(w)dw . (5)

The asymptotic expansion in n is (Watanabe, 2018, §6.3) given by

Fn = nLn(w0) + λ log n− (m− 1) log log n+Op(1) (6)

where w0 is an optimal parameter, λ is the learning coefficient and m is the multiplicity. We refer to this as the free
energy formula.

The philosophy behind using the marginal likelihood (or equivalently, the free energy) to perform model selection is
well established. Thus we could use the first two terms in (6) to choose between two competing models on the basis
of their fit (as measured by nLn) and their complexity (as measured by λ). We can also apply the same principle to
different regions of the parameter space in the same model. Let {Wα}α be a finite collection of compact semi-analytic
subsets of W with nonempty interior, whose interiors cover W . We assume each Wα contains in its interior a point
w∗

α minimising L on Wα and that the triple (p, q, φ) restricted to Wα in the obvious sense has relative finite variance.
We refer to the α rather loosely as phases. We can choose a partition of unity ρα subordinate to a suitably chosen
cover, so as to define φα(w) = ρα(w)φ(w) with

Fn = − log

∫
W

e−nLn(w)φ(w)dw = − log
∑
α

∫
Wα

e−nLn(w)φα(w)dw

= − log
∑
α

Vα

∫
Wα

e−nLn(w)φα(w)dw = − log
∑
α

e−Fn(Wα)−vα

where φα = 1
Vα

φα for Vα =
∫
Wα

φαdw, vα = − log(Vα) and

Fn(Wα) = − log

∫
Wα

e−nLn(w)φα(w)dw (7)

denotes the free energy of the restricted tuple (p, q, φα,Wα). We will refer to Fn(Wα) as the local free energy.
Using the log-sum-exp approximation, we can write Fn = − log

∑
α e−Fn(Wα)−vα ≈ minα

[
Fn(Wα) + vα

]
. Since

(6) applies to the restricted tuple (p, q, φα,Wα) we have

Fn(Wα) = nLn(w
∗
α) + λα log n− (mα − 1) log log n+Op(1) (8)

which we refer to as the local free energy formula.5

In this paper we absorb the volume constant vα and terms of order log log n or lower in (8) into a term cα that we treat
as effectively constant, giving

Fn ≈ min
α

[
nLn(w

∗
α) + λα log n+ cα

]
. (9)

A principle of internal model selection is suggested by (9) whereby the Bayesian posterior “selects” a phase α based on
the local free energy of the phase, in the sense that this phase contains most of the probability mass of the posterior for
this value of n (Watanabe, 2009, §7.6).6 At a given value of n we can order the phases by their posterior concentration,
or what is the same, their free energies Fn(Wα). We say there is a local phase transition between phases α, β at critical
sample size ncr, written α → β, if the position of α, β in this ordered list of phases swaps. That is, for n ≈ ncr and
n < ncr the Bayesian posterior prefers α to β, and the reverse is true for n > ncr. We say that a phase α dominates
the posterior at n if it has the highest posterior mass, that is, Fn(Wα) < Fn(Wβ) for all β ̸= α. A global phase

5In general deriving the free energy formula requires some sophisticated mathematics (Watanabe, 2009, 2018) but when the
critical point w∗

α dominating the phase Wα is minimally singular, simpler techniques similar to (Balasubramanian, 1997) suffice;
see (Lau et al., 2023, Appendix A). Many, but not all, of the singularities appearing in this paper are minimally singular.

6We often replace Ln(w
∗
α) by L(w∗

α) in comparing phases; see (Watanabe, 2018, §9.4).
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transition is a local phase transition where α dominates the posterior for n < ncr and β dominates for n > ncr with n
near ncr. Generally when we speak of a phase transition in this paper we mean a local transition.

Generically, phase transitions occur when, as n increases, phases with lower loss and higher complexity are preferred;
this expectation is verified in TMS in the next section. For more on the theory of Bayesian phase transitions see
Appendix C.

Figure 2: Proportion of Bayesian posterior concentrated in regions Wk,σ for r = 2, c = 6 according to the free energy
formula (theory, left) and MCMC sampling of the posterior (experimental, right). Theory predicts, and experiments
show, a phase transition 5 → 6 in the range 600 ≤ n ≤ 700.

4.2 Experiments

There is a fundamental tension in the internal model selection story elaborated above: the free energy formula is
asymptotic in n, but a theoretical discussion of phase transitions involves comparing local free energies Fn(Wα) at
finite n. Whether or not this is valid, in a given range of n and for a given system, is a question that may be difficult to
resolve purely theoretically. We show experimentally for r = 2, c = 6 that a Bayesian phase transition actually takes
place between the 5-gon and the 6-gon, within a range of n values consistent with the free energy formula.

In this section we focus on the case r = 2, c = 6. For c ∈ {4, 5} see Appendix F.4. We first define regions of
parameter space {Wα}α. Given a matrix W we write ConvHull(W ) for the number of points in the convex hull of
the set of columns. For 3 ≤ k ≤ c, 0 ≤ σ ≤ c− k we define

Wk,σ =
{
w = (W, b) ∈ W | ConvHull(W ) = k and b has σ positive entries

}
.

The set Wk,σ ⊆ Rd is semi-analytic and contains the kσ+-gon in its interior. For α = (k, σ) we let w∗
α denote

the parameter of the kσ+-gon. We verify experimentally the hypothesis that this parameter dominates the Bayesian
posterior of Wα (see Appendix F) by which we mean that most samples from the posterior for a relevant range of
n values are “close” to w∗

α.7 In this sense the choice of phases Wα is appropriate for the range of sample sizes we
consider.

We draw posterior samples using MCMC-NUTS (Homan & Gelman, 2014) with prior distribution N(0, 1) and sample
sizes n. Each posterior sample is then classified into some Wk,σ (our classification algorithm for the deciding the
appropriate value of k is not error-free.) For each n, 10 datasets are generated and the average proportion of the
k-gons, and standard error, is reported in Figure 2. Details of the theoretical proportion plot are given in Appendix F.1.

Let w∗
α, w

∗
β be k-gons dominating phases Wα,Wβ . A Bayesian phase transition α → β occurs when the difference

between the free energies Fn(Wβ) − Fn(Wα) swaps sign, from positive to negative, as explained in the previous
section.

The most distinctive feature in the experimental plot is the 5 → 6 transition in the range 600 ≤ n ≤ 700. The
free energy formula predicts this transition at ncr ≈ 600 (Appendix C.2). An alternative visualization of the 5 → 6
transition using t-SNE is given in Appendix F.2. As n decreases past 400 the MCMC classification becomes increas-
ingly uncertain, and it is less clear that we should expect the free energy formula to be a good model of the Bayesian
posterior, so we should not read too much into any correspondence between the plots for n ≤ 400 (see Appendix F.2).

7The kσ+,ϕ−-gons for ϕ > 0 have high loss but may nonetheless dominate the posterior for very low n, however this is outside
the scope of our experiments, which ultimately dictates the choice of the set Wk,σ .
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Figure 3: Visualization of 400 SGD trajectories initialized at MCMC samples from the Bayesian posterior for r =
2, c = 6 at sample size n = 100. We see that SGD trajectories are dominated by plateaus at loss values corresponding
to our classification of critical points (Appendix A) and that lower loss critical points have higher estimated local
learning coefficients. Note that for highly singular critical points we see that λ̂ is unable to provide non-negative
values without additional hyperparameter tuning, but the ordinality (more positive is less degenerate) is nonetheless
correct. See Appendix K for details and caveats for the λ̂ estimation.

5 Dynamical Phase Transitions

A dynamical transition α → β occurs in a trajectory if it is near a critical point w∗
α of the loss at some time τ1 (e.g.

there is a visible plateau in the loss) and at some later time τ2 > τ1 it is near w∗
β without encountering an intermediate

critical point. We conduct an empirical investigation into whether the k-gon critical points of the TMS potential
dominate the behaviour of SGD trajectories for r = 2, c = 6, and the existence of dynamical transitions.

There are two sets of experiments. In the first we draw a training dataset Dn = {x1, . . . , xn} where n = 1000 from
the true distribution q(x). We also draw a test set of size 5000. We use minibatch-SGD initialized at a 4-gon plus
Gaussian noise of standard deviation 0.01, and run for 4500 epochs with batch size 20 and learning rate 0.005. This
initialisation is chosen to encourage the SGD trajectory to pass through critical points with high loss after a small
number of SGD steps, allowing us to observe phase transitions more easily. Along the trajectory, we keep track of
each iterate’s training loss, test set loss and theoretical test loss. Figure 1 is a typical example, additional plots are
collected in Figures B.1-B.7. In the second set of experiments, summarized in Figure 3, we take the same size training
dataset but initialize SGD trajectories differently, at random MCMC samples from the Bayesian posterior at n = 100
(a small value of n). The number of epochs is 5000.

In both cases we estimate the local learning coefficient of the training iterates wt. This is a newly-developed estimator
Lau et al. (2023) that uses SGLD (Welling & Teh, 2011) to estimate a version of the WBIC (Watanabe, 2013) localized
to wt and then forms an estimate of the local learning coefficient λ̂(wt) based on the approximation that WBIC(wt) ≈
nLn(wt)+λ(wt) log n where λ(wt) is the local RLCT. In the language of Lau et al. (2023), we use a full-batch version
of SGLD with hyperparameters ϵ = 0.001, γ = 1 and 500 steps to estimate the local WBIC.

These experiments support the following description of SGD training for the TMS potential when r = 2, c = 6:
trajectories are characterised by plateaus associated to the critical points described in Section 3.2 and further discussed
in Appendix A. The dynamical transitions encountered are

4++−−− −→ 4+−− −→ 4− , 4+−−− −→ 4−− ,

4++−− −→ 4+− −→ 4 , 4++− −→ 4+ −→ 5 −→ 5+ . (10)

The dominance of the classified critical points, and the general relationship of decreasing loss and increasing com-
plexity, can be seen in Figure 3.
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5.1 Relation Between Bayesian and Dynamical Transitions

Phases of the Bayesian posterior for TMS with r = 2, c = 6 are dominated by k-gons which are critical points of the
TMS potential (Section 4). The same critical points explain plateaus of the SGD training curves (Section 5). This is not
a coincidence: on the one hand SLT predicts that phases of the Bayesian posterior will be associated to singularities of
the KL divergence, and on the other hand it is a general principle of nonlinear dynamics that singularities of a potential
dictate the global behaviour of solution trajectories (Strogatz, 2018; Gilmore, 1981).

However, the relation between transitions of the Bayesian posterior and transitions over SGD training is more subtle.
There is no necessary relation between these two kinds of transitions. A Bayesian transition α → β might not have an
associated dynamical transition if, for example, the regions Wα,Wβ are distant or separated by high energy barriers.
For example, the Bayesian phase transition 5 → 6 has not been observed as a dynamical transition (it may occur, just
with low probability per SGD step). However, it seems reasonable to expect that for many dynamical transitions there
exists a Bayesian transition between the same phases. We call this the Bayesian antecedent of the dynamical transition
if it exists. This leads us to:

Bayesian Antecedent Hypothesis (BAH). The dynamical transitions α → β encountered in neural network training
have Bayesian antecedents.

Since a dynamical transition decreases the loss, the main obstruction to having a Bayesian antecedent is that in a
Bayesian phase transition α → β the local learning coefficient should increase (Appendix D). Thus the BAH is in a
similar conceptual vein to the expectation, discussed in Section 2, that SGD prefers higher complexity critical points
as training progresses. While the dynamical transitions in (10) are all associated with increases in our estimate of the
local learning coefficient, we also know that at low n, the constant terms can play a nontrivial role in the free energy
formula. Our analysis (Appendix D.1) suggests that all dynamical transitions in (10) have Bayesian antecedents, with
the possible exception of 4++−−− → 4+−− and 4+−−− → 4−− where the analysis is inconclusive.

6 Conclusion

Phase transitions and emergent structure are among the most interesting phenomena in modern deep learning (Wei
et al., 2022a; Barak et al., 2022; Liu et al., 2022) and provide an interesting avenue for fundamental progress in neural
network interpretability (Olsson et al., 2022; Nanda et al., 2023) and AI safety (Hoogland et al., 2023). Building on
Elhage et al. (2022) we have shown that the Toy Model of Superposition with two hidden dimensions has, in the high
sparsity limit, phase transitions in both stochastic gradient-based and Bayesian learning. We have shown that phases
are in both cases dominated by k-gon critical points which we have classified, and we have proposed with the BAH a
relation between transitions in SGD training and phase transitions in the Bayesian posterior.

Our analysis of TMS also demonstrates the practical utility of the local complexity measure λ̂ introduced in (Lau et al.,
2023), which is an all-purpose tool for measuring model complexity. In this paper we have shown that this tool reveals
in TMS an interesting sequential learning mechanism underlying SGD training, consistent with observations derived
in other settings including DLNs (Arora et al., 2019; Gissin et al., 2019) and multi-index models (Abbe et al., 2023).
However we emphasise that λ̂ has not been specifically engineered for studying complexity in TMS. In principle it
can be used to study the development of internal structure over training in any neural network, from toy models like
the ones considered here, through to large language models.
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A Fantastic Critical Points and Where to Find Them

In this section we provide a brief guide, using loose intuitive language, to recognise known critical parameters and
their variations. Rigorous derivation and details are given in Appendix H, I, and J.

Broadly speaking, known critical parameters, (W ∗, b∗), are classified by three discrete numbers:

• k: the number of vertices in the regular polygon formed by the convex hull of the columns of the W ∗ matrix,
interpreted as a vector in R2. The length of these vectors (for any k ≤ c) have to be at the optimal values
derived in Appendix H and listed in Table A.1.

• σ: the number of positive values in the bias vector. These positive biases are required to take on the optimal
value at b∗ = 1/(2c) and have to occur at indices that do not correspond to the k-gon vertices.

• ϕ: the number of large negative values in the bias vectors. So far, we’ve only observed ϕ > 0 when k = 4,
i.e. this discrete subcategory only applies to 4-gons. These biases have to occur at indices that do correspond
to the 4-gon vertices.

For r = 2, c = 6, the above description and constraints result in the 18 families of critical points whose representative
members are shown in Figure A.1 and their loss or potential energy levels are shown in Figure A.2.

Next, we discuss possible variations within these families of critical points. Aside from the ever-present rotational
and permutation symmetries discussed elsewhere, there are variations of these standard descriptions that allow the
parameter to stay on the same critical submanifold. Figure A.3 shows some examples of irregular versions of known
critical points. One can cross-check that their potential values L are the same as their regular counterpart. Most of
these variation is the result of having negative values in the bias vectors allowing for extra variability without changing
the loss value. To explain the examples in Figure A.3,

• 5-gon (top left). In the standard 5-gon family, the vestigial bias b′ can have arbitrary negative value and
corresponding weight column can be any vector so long as its length l′ is smaller than

√
min{|b′|, |b∗|}

where b∗ is the optimal negative bias for the main columns (see Table A.1).

• 4-gon (top right). The two vestigial biases can take arbitrary negative values.
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• 4+−−-gon (bottom left). Having two negative biases with large magnitude afford a few other degrees of
freedom. The weight columns W3,W4 with those large negative biases can be any vector as long as (1) they
lengths is smaller than

√
|bi| for their respective biases and (2) they form obtuse angle relative other columns

W1 and W2, i.e the other two vertices of the 4-gon.
• 4−−-gon (bottom right). Other than the variation in the main columns W3,W6 with large negative biases, the

two vestigial columns can also be any vectors as long as they stay within the sector between W1 and W2 and
their lengths are bounded by min

{√
|bi| | i = 3, 4, 5, 6

}
.

Critical point l∗ b∗

4-gon 1 0
5-gon 1.17046 −0.28230
6-gon 1.32053 −0.61814

Table A.1: Parameters of certain k-gons.
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Figure A.1: Representative of each known class of critical parameters in r = 2, c = 6.
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Figure A.2: Potential energy levels L for known critical points in r = 2, c = 6.

Figure A.3: Irregular versions of known critical points in r = 2, c = 6.
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B Additional examples of SGD trajectories for the r = 2, c = 6 TMS potential

In this Appendix we collect additional individual SGD trajectories for the r = 2, c = 6 TMS potential, with the same
hyperparameters as discussed in Section 5. These are all of the runs from 30 random seeds that had a dynamical
transition. We note that each of the critical points encountered in a plateau fall into the classification discussed in
Appendix A and the estimator λ̂ for the local learning coefficient jumps in each transition. Note that the transitions in
Figure 1 are 4++− → 4+ → 5.

First a brief guide to reading these figures, for example Figure B.1. The top row contains a visualization of the weight
vector W , one black arrow per column. Adjacent columns are connected by a blue line, the red dashed line shows the
convex hull. The middle row shows the parameter more quantitatively: columns Wi for 1 ≤ i ≤ 6 ordered from the
negative x-axis in a counter-clockwise direction and ∥Wi∥ (black) and |bi| (red, green) are shown. A white plus sign
indicates a bias that exceeds 1.25 ∗maxi∈I ∥Wi∥2 where I is the set of all columns i where bi ≥ ∥Wi∥. All columns
share the same axes. Each column of the top and middle rows jointly display the same parameter w = (W, b) which
corresponds to (in order) the points marked during training by red dots in the bottom row. The bottom row shows
losses and local learning coefficient, with the latter smoothed over a window of size 6, where λ̂ is measured every 30
epochs.

We note that in some runs containing particularly degenerate k-gons, such as the 4++−−− in Figure B.1, the estimator
λ̂ produces negative values for the standard hyperparameter ϵ = 0.001. By adapting this hyperparameter to the level
of degeneracy we can correct for this and avoid invalid estimates (see Appendix K). But since we cannot predict the
trajectory of SGD iterates, we choose to use a fixed hyperparameter γ = 1.0, ϵ = 0.001, number of SGLD steps = 500
in all Figures of this form.

Figure B.1: Trajectory with dynamical transitions 4++−−− → 4+−− → 4−.
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Figure B.2: Trajectory with dynamical transition 4+− → 4.
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Figure B.3: Trajectory with dynamical transition 4+ → 5.
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Figure B.4: Trajectory with dynamical transition 4+ → 5.
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Figure B.5: Trajectory with dynamical transition 4+−−− → 4−−.
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Figure B.6: Trajectory with dynamical transition 4+ → 5.
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Figure B.7: Trajectory with dynamical transition 4++−− → 4+− → 4.
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C Using the Free Energy Formula

In Section 4.1 we defined a (local) phase transition α → β at a critical sample size ncr to take place when the local
free energies swap order, as in the following table, with n taken close to ncr:

n < ncr n = ncr n > ncr

Fn(Wα) < Fn(Wβ) Fn(Wα) ≈ Fn(Wβ) Fn(Wα) > Fn(Wβ)

We assume n is in a range where the local free energies for γ ∈ {α, β} are well-approximated by the right hand-side
of the following

Fn(Wγ) ≈ nL(w∗
γ) + λγ log n+ cγ (11)

for some constant cγ . While n is of course an integer, to find where the free energy curves cross we may treat n as a
real variable. To an ordered pair α, β we may associate

∆L = L(w∗
β)− L(w∗

α)

∆λ = λβ − λα

∆c = cβ − cα
Then to solve Fn(Wα) = Fn(Wβ) for n we may instead solve

n∆L+∆λ log n+∆c = 0 . (12)
Theoretically, a phase transition α → β exists if and only if this equation has a positive solution. However, in practice
the free energy formula on which this equation is based will only well describe the Bayesian posterior for sufficiently
large n, and it is an empirical question what this n may be. In the following when we say that a phase transition is
predicted to exist (or not), the reader should keep this caveat in mind.

When we refer to theoretically derived values for phase transitions, we mean that we solve (12) with the given values
of ∆L,∆λ,∆c. Note that if the phase β has lower loss, learning coefficient and constant term (so that ∆L, ∆λ and
∆c are all negative) then there can be no phase transition α → β as Fn(Wα) is never lower than Fn(Wβ).

Although the constant (and lower order) terms in the free energy expansion are not well-understood, in this paper we
proceed assuming that the leading contribution comes from the prior in the manner described in Section C.1 below.

C.1 Constant terms in the Free Energy Formula

Recall from Section 4.1 that given a collection of phases {Wα} the free energy is

Fn = − log
∑
α

Vα

∫
Wα

e−nLn(w)φα(w)dw

where φα = 1
Vα

φα for Vα =
∫
Wα

φαdw. Suppose that the phase Wα is dominated by a critical point w∗
α and that the

partition of unity is chosen so that φα(w
∗
α) ≈ φ(wα) (this is reasonable since the critical point is in the interior). We

explore the following approximation to the contribution of α to the above integral∫
Wα

e−nLn(w)φα(w)dw ≈ φ(w∗
α)

∫
Wα

e−nLn(w)dw .

This means that the prior contributes to cα of (8) through − log(Vαφ(w
∗
α)) as well as through the OP (1) term of the

asymptotic expansion. With a normal prior φ = 1

σ
√

(2π)d
exp(− 1

2σ2 ∥w∥2)

Vαφ(w
∗
α) = φα(w

∗
α) ≈

1

σ
√

(2π)d
exp

(
− 1

2σ2
∥w∗

α∥2
)
.

Hence − log(Vαφ(w
∗
α)) depends on σ through the sum log σ+ 1

2σ2 ∥wα∥2. Here if w∗
α = (W ∗

α, b
∗
α) we have ∥w∗

α∥2 =

∥W ∗
α∥2 + ∥b∗α∥2. In Table C.1, Table C.2 we show the value of this contribution when σ = 1 for c ∈ {5, 6}. Note that

for some k-gons there are negative biases that can take arbitrarily large values, so the shown values are lower bounds.

C.2 Theoretical predictions for the 5-gon to 6-gon transition for r = 2, c = 6

With α = 5 and β = 6 we have from Table 1 and Table C.2 that
∆L = 0.04819− 0.06874 = −0.02055

∆λ = 8.5− 7 = 1.5

∆c = 6.37767− 3.62417 = 2.7535

Solving (12) numerically gives ncr = 601 as the closest integer.
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Critical point 1
2∥w

∗
α∥2

4 ≥ 2
4+ ≥ 2.05
5 ≥ 3.62417

Table C.1: Prior factors for k-gons when c = 5.

Critical point 1
2∥w

∗
α∥2

6 6.37767
5 > 3.62417
5+ 3.62764
4 2
4− > 1.5
4−− > 1
4−−− > 0.5
4−−−− > 0
4+ 2.00347
4+− > 1.50347
4+−− > 1.00347
4+−−− > 0.50347
4+−−−− > 0.00347
4++ 2.00694
4++− > 1.50694
4++−− > 1.00694
4++−−− > 0.50694
4++−−−− > 0.00694

Table C.2: Prior factors for k-gons when c = 6.

C.3 Influence of constant terms

Dividing (12) through by log n we have
n

log n
= − 1

log n

∆c

∆L
− ∆λ

∆L
= − 1

∆L

[ ∆c

log n
+∆λ

]
. (13)

In the phase transitions we analyse in this paper ∆L is on the order of 0.01, ∆λ is on the order of 1, and ∆c is on
the order of 1, so ∆λ/∆L,∆c/∆L are on the order of 10. In Figure 2 we care about roughly 200 ≤ n ≤ 1000 so
5 ≤ log n ≤ 7. Hence in practice the first term in (13) is roughly one order of magnitude lower than the second; the
upshot being that the primary determinant of ncr is |∆λ/∆L| but the influence of the constant terms can be significant.

In the second transition of Figure 1 from 4+ → 5 we have ∆λ = 2, ∆L = 0.06874 − 0.10417 = −0.03543 (based
on Table 1) and ∆c = 3.62417 − 2.00347 = 1.6207 (based on Table C.2) so −∆c/∆L ≈ 45 and −∆λ/∆L ≈ 56.
Solving (12) numerically yields ncr ≈ 380. Solving the equation with ∆c = 0 gives ncr ≈ 327, so as suggested
above including the constant term shifts the critical sample size by a lower order term.

C.4 Double Transitions

Assume that there are transitions α → β at critical sample size n1 and β → γ at critical sample size n2, both involving
no change in constant terms so that (16) applies. Since n/ log n is increasing, if n1 < n2 we deduce

−∆λ1

∆L1
< −∆λ2

∆L2
(14)

where
∆λ1 = λβ − λα ,

∆λ2 = λγ − λβ ,

∆L1 = L(w∗
β)− L(w∗

α) ,

∆L2 = L(w∗
γ)− L(w∗

β) .
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From (14) we obtain the inequality

∆L2∆λ1 > ∆λ2∆L1 =⇒ ∆L2

∆λ2
>

∆L1

∆λ1
(15)

which says that: along any curve in the (λ, L) plane following a sequence of Bayesian phase transitions, the slope
must increase. For example, we observe in Figure D.1 that the negative slopes become successively less negative as
we move along a sequence of transitions. This is the least obvious for the pair of transitions 4+−− → 4+ and 4+ → 5
which corresponds to the fact that the gap n2 − n1 is small in Figure D.5.

D Bayesian Antecedents

In this section we review whether the phase transitions we find empirically have Bayesian antecedents. To begin we
consider the case where ∆c = 0. Then from (13) we deduce

n

log n
= −∆λ

∆L
. (16)

For n > 3, n/ log n is positive and an increasing function of n, and we denote the inverse function by N . Since the
critical sample size for a transition α → β must be positive, if ∆L < 0 (the loss decreases) then (16) has a (unique)
solution if and only if ∆λ > 0 (the complexity increases). The unique solution is the critical sample size

ncr = N
(
− ∆λ

∆L

)
.

If ∆L < 0 and ∆c ̸= 0 we simply plot the free energy curves and see if they intersect. Given the orders of magnitude
discussed in Section C.3 we expect if ∆c > 0, ∆λ > 0 then there is likely to be a solution, whereas if ∆c < 0,
∆λ < 0 then the right hand side of (13) is negative and no transition can exist. The mixed cases are harder to argue
about in general terms.

D.1 The BAH for r = 2, c = 6

We examine the evidence for the existence of Bayesian antecedents of the dynamical transitions in TMS for r = 2, c =
6 exhibited in Section 5. The known dynamical transitions are summarised in Figure D.1. The slope of the lines is,
in the notation of (16), equal to ∆L

∆λ and so the fact that all observed phase transitions go down and to the right would
indicate, if the constant terms were ignored, that the critical sample size is positive and a Bayesian phase transition
exists. Here the L values are from Section A and the λ̂ values from Table K.1 (note the caveats there) for those k-gons
where we do not have theoretically derived values (for α ∈ {5, 5+, 6} see Table 1).

To perform a more refined analysis which includes the constant terms we use Table C.2 and compare plots of free
energy curves. In the cases where we use an empirical estimate of the learning coefficient, we display the curve as
part of a shaded region made up of curves with coefficients of log n within one standard deviation of the estimate. The
results are shown in Figures D.2-D.5.

For phase transitions occurring at large values of n, the existence of a transition is relatively insensitive to small
changes in the learning coefficient or constant terms, and we can also be more confident that the predicted transition
translates (via the correspondence between the free energy formula and the posterior, which is only valid for suffi-
ciently large n) to an actual phase transition in the posterior. For transitions occurring at low n, such as those in Figure
D.2 and Figure D.3, the analysis is strongly affected by small changes in learning coefficient or constant terms, and so
we cannot be sure that a Bayesian transition exists.
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Figure D.1: Summary of known dynamical transitions and the phases involved. Each scatter point (λ̂α, Lα) corre-
sponds to one of our classified critical points w∗

α and a red line is drawn between phases with dynamical transitions
connecting them (in the direction that goes right and down) as listed in (10). These “curves” are necessarily concave
up if the time order of dynamical transitions matches the sample size order of Bayesian transitions, see C.4.

Figure D.2: Free energy plot providing evidence of Bayesian transitions 4++−−− → 4+−− and 4+−− → 4−. In the
former case the plot is merely suggestive, since the transition takes place at low n and is very sensitive to the learning
coefficients and constant terms.
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Figure D.3: Free energy plot providing weak evidence of a Bayesian transition 4+−−− → 4−−. The transition takes
place at low n and is very sensitive to the learning coefficients and constant terms.

Figure D.4: Free energy plots suggesting Bayesian transitions 4++−− → 4+− and 4+− → 4.
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Figure D.5: Free energy plots suggesting Bayesian transitions 4++− → 4+, 4+ → 5 and 5 → 5+.
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E Intuition for the local learning coefficient as complexity measure for c = 6

Here we provide some intuition for why critical points in TMS with higher local learning coefficient should be thought
of as more complex. It seems uncontroversial that the standard (k + 1)-gon is more complex than the standard k-gon.
We focus on explaining why increasing the number of positive biases on a k-gon causes a slight increase in the model
complexity and increasing the number of large negative biases on the 4-gon causes a large decrease in the complexity.
This pattern can be seen empirically in Table K.1.

The basic fact that informs this discussion is that the local learning coefficient is half the number of normal directions
to the level set L(w) = L(w∗

α) at w∗
α when L is Morse-Bott at w∗

α so that a naive count of normal directions captures
the degeneracy. See (Watanabe, 2009, §7.1), (Wei et al., 2022b, §4) and (Lau et al., 2023, Appendix A) for relevant
mathematical discussion. That means that if we increase the number of directions we can travel in the level set by 1
when we move from w∗

α to w∗
β then we expect to decrease the learning coefficient by 1

2 . When the level set is more
degenerate at w∗

α such naive dimension counts fail to be the correct measure and it is more difficult to provide simple
intuitions. However in TMS we are fortunate that some of the critical points (e.g. 5, 5+) are minimally singular so
naive counts actually do capture what is going on.

So let us do some naive counting. Recall that any positive bias bi associated with a column Wi with zero norm must
have the exact value 1

2c , whereas negative biases associated with such columns can take on any value. Fixing the value
of the bias reduces the number of free parameters by 3, since if we have a positive bias at b6 then l6 = ∥W6∥ must
be zero and the parameter θ5 does not exist in the parametrisation. This explains why the learning coefficient of the
5+-gon is larger than that of the 5-gon by 3

2 , since both are minimally singular and we have decreased the number of
free parameters (dimension of the level set) by 3.

Next we consider large negative biases. For the 4−-gon, note that the neuron with the large negative bias never fires
(it is a “dead” neuron), so this critical point only really has representations for three inputs. In fact, when there are no
positive biases, the family of parameters that we call a 4−-gon includes w ∈ W with (using the l, θ, b parametrization)
any b4 < 0 and any l24 < −b4 including l4 arbitrarily close to zero, with a convex hull containing only three vertices.
Further, in the case of the 4−−-gon, this configuration only has representations for two inputs. In this case, if the
two weights with negative biases are adjacent then there is an entire “dead” quarter-plane of the activation space, and
the 5th and 6th columns of W can take on nonzero values in that quarter plane (provided they satisfy l2i < −bi for
i ∈ {5, 6}). This extra freedom means that the number of bits required to “pin down” a 4−−-gon is less than a 4−gon,
which is less than a 4-gon. Similarly, specifying the 4−−−-gon and 4−−−−-gon requires even less information, so it
is appropriate that the local learning coefficient classifies them as less complex.
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F MCMC Experiments

We give further details about the experiments where we use MCMC to sample the Bayesian posterior to establish the
phase occupancy plot in 2. For a given number of columns c and sample size n, we generate n samples Xi from the
true distribution q(x) and obtain a likelihood function

∏n
i=1 p(Xi | w) with q(x) and p(x | w) given by (2) and (3)

respectively. We choose a prior on the parameter space w = (W, b) to be the standard multivariate Gaussian prior (i.e.
with zero mean and identity covariance matrix).

To sample from the corresponding posterior distribution, we run Markov Chain Monte Carlo (MCMC), specifically
with the No U-Turn sampler (NUTS) (Homan & Gelman, 2014), with 6 randomly initialised MCMC chains, each with
5000 iterations after 500 iterations of burn-in. We thin the resulting chain by a factor of 10 resulting in a total posterior
sample size of 3000. For each combination of n and c, we run the above posterior sampling procedure for 10 different
PRNG seeds, which produces different input samples Xi as well as changing MCMC trajectories.

F.1 Details of Theoretical Proportion Curves

Figure F.1: Extended version of theoretical occupancy plot shown previously in Figure 2 where the effect of sub-
dominant phases is now included. Note that exact theoretical values of the loss and prior contributions were used for
all critical points shown, and exact values of the local learning coefficient were used for the 6-gon, 5+-gon and 5-gon,
but estimates of the local learning coefficients were used for other critical points (Table K.1).

This section contains details of the theoretical component of Figure 2. For each α ∈ {4, 4+, 5, 5+, 6} we consider the
free energy approximation

fα(n) = nLα + λα log n+ cα

where Lα is the theoretical value taken from Section A and cα are the constant terms from Table C.2. We use the
theoretically derived value of λα in Table 1 for α ∈ {5, 5+, 6} and the empirically estimated λ̂α for α ∈ {4, 4+} from
Table K.1. We then define

pα(n) = exp(−fα(n)) , Z(n) =
∑
α

pα(n)

and the theory plot in Figure 2 shows the curves { 1
Z pα(n)}α. Figure F.1 is produced in the same way, with a larger

range of phases α.

F.2 Verifying dominant phases for r = 2, c = 6

To quantify the relative frequency of each phase at a given sample size n, we classify all posterior samples into various
phases Wk,σ by counting the vertices in their convex hull (k) and the number of positive biases (σ), and compute

29



Dynamical versus Bayesian Phase Transitions in a Toy Model of Superposition

the proportion of samples that falls into each phase. We then plot the frequencies of each phase as a function of
sample size n to visualize how preferred phases changed with n. Figure 2 shows the corresponding plot in the case for
r = 2, c = 6. The lines show the frequencies of the phases 6, 5, 5+, 4 and 4+, while unclassified posterior samples are
labelled as “other”.

While this convex-hull and positive bias counting classification scheme is based on the characteristics of known critical
points, it is only an imperfect reflection. There is the risk of mistaking posterior samples in Wk,σ as evidence of occu-
pation in the kσ+-gon phase when it is not. Since we do not claim to have found all possible critical points of the TMS
potential and have neglected the higher loss variants of 4-gon (explained below), it is possible that MCMC samples do
not reflect known phases. If this misclassification happens sufficiently often, it could invalidate the comparison of the
occupancy plots with theoretical predictions.

To guard against this, we should check that every MCMC sample in Wk,σ is close to a known critical point in Wk,σ ,
or is classified as “other”. To reduce the amount of labour for this task, we run t-SNE projection (van der Maaten &
Hinton, 2008) of the parameters into a 2D space with a custom metric design to remove known symmetries allowing
samples that are similar to each other to show up in t-SNE projections as clusters regardless of the irrelevant differences
between their angular displacement and column permutation. The custom t-SNE metric is such that distance between
a pair of parameters, (W, b), (W ′, b′), is given by the sum

HammingDistance(b > 0, b′ > 0) + min
i,j∈{1,...c}

∥Normalize(W, i)−Normalize(W, j)∥Frobenius

where b > 0 denotes the binary array (1b1>0, . . . ,1bc>0) and Normalise(W, i) denotes a normalised weight matrix
where all column vectors are rotated by a fixed angle so that ith column vector is aligned with the positive x-axis and
the columns are reordered so that the column indices reflects the order of the vectors when read counter-clockwise
starting from the positive x-axis.

With this, we can verify the occupancy of dominant phases by checking several samples in each cluster to verify the
phase classification of the entire cluster. To illustrate, let us verify the phase occupancy for c = 6 at n = 1000 as
shown in Figure 2. Figure F.2 shows the t-SNE projection of the samples for a particular MCMC run. Looking at both
the theoretical and empirical occupancy curves at n = 1000, the posterior is dominated by the 6-gon, followed by the
5-gon and then the 5+-gon. Looking at various samples in the largest (green) t-SNE cluster, they do correspond to the
6-gon all with biases near the optimal negative value. The minor cluster (in dark purple) corresponds to the 5-gon.
This cluster of 5-gons includes samples with a sixth “vestigial leg” with non-zero length. However, these belong to
the same phase (same critical submanifold as the 5-gon) since the corresponding bias has large negative value. The
t-SNE projection also reveals a small number of 5+-gon samples.

Performing similar inspections for MCMC chains at n = 500, 700 allows us to confirm that the dominant phase
switches from the 5 to 6-gon in the interval 600 ≤ n ≤ 700. This inspection also confirms that clusters of 5+-gons
coexist with the two dominant phases albeit at a much lower probability.

For sufficiently low values of n, we encounter two issues in establishing phase occupancy.

1. Other higher loss phases such as variants of the 4-gon with large negative biases, and potentially other higher
energy phases that we have not characterised start to have non-negligible occupancy.

2. As n becomes lower, the posterior distribution becomes less concentrated. This means that significantly more
posterior mass, and hence a higher fraction of MCMC samples, is accounted for by regions of parameter space
that are further away from critical points. These points may be close to the boundaries between different
regions, increasing the chance of misclassification, or they may bear little resemblance to the critical point
associated with the region they are classified into.

For n > 400, from inspecting t-SNE clusters, the above issues do not arise: the samples are close to known critical
points, and the frequency of unclassified “other” samples is low enough that it won’t significantly affect the relative
frequency of the dominant phases. Furthermore, we also do not observe many samples that are close to high loss 4-gon
variants. This supports the prediction depicted in the extended theoretical occupancy curve shown in Figure F.1 which
suggests that these 4-gon variants only show up in the n < 400 regime.

We caution the reader in regards to interpreting the phase occupancy diagrams for the range 100 < n < 400 where
one or more of the issues above could affect the empirical frequency.

F.3 MCMC Health

MCMC sampling for high dimensional posterior distributions is challenging. In our case there is the added challenge
of the posterior being multi-modal (the posterior density has local maxima at the dominant phases) where the modes
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Figure F.2: t-SNE plots of MCMC samples from the posterior at a range of sample sizes n encompassing the phase
transition from the 5-gon to the 6-gon.

are not points, but submanifolds of varying codimension. To ensure that the proportion of MCMC samples that falls
into Wk,σ is a good reflection of the probability of Wk,σ , we need to make sure that our Markov chains are well mixed.

For this purpose, we produce and check two different types of diagnostic plots for each MCMC run:

• Theoretical loss trace plots. We plot the theoretical loss of each MCMC sample against its sample index
which orders the samples in each MCMC chain in increasing order of MCMC iterations required to generate
the sample. An unhealthy MCMC chain will show up on such a plot as points occupying a very narrow band
of theoretical loss values.

• Phase type trace plots. On the same trace plots, we color each sample by their phase classification.
Successful posterior sampling should produce samples in each phase with a frequency that is roughly the
same as the posterior probability of that phase. While we do not know the true probability of a given phase,
we can cross reference each MCMC chain with other chains performing sampling on the same posterior to
see that every MCMC chain visits phases discovered by any other MCMC chain. An unhealthy MCMC chain
will show up on such a plot as a chain that only contains samples of one phase type when there is more than
one phase type observed across all chains.
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Figure F.3 shows a examples of such diagnostic trace plots for a few experiments (with c = 6 and matching those in
Figure F.2) at n = 300, 1000. All six chains run in these experiments are plotted on the same plot and distinguished
by color. At the higher sample size n = 1000, we expect and do indeed observe that a particular phase, the 6-gon,
dominates the posterior but every chain visits sub-dominant phases as well.

The diagnostics detect no sign of problems for the experiments used to establish the phase occupancy curves in Figures
2, F.5 and F.6. However, we do observe that MCMC fails for sample sizes n significantly greater than those we report
in this paper. With large sample sizes, the posterior distribution becomes highly concentrated at each phase, posing
a significant challenge for an MCMC chain to escape its starting point (controlled by random initialization and the
trajectory of the burn-in phase). Figure F.4 shows an example at n = 4000, where we see

• A chain (colored pink) which, for many iterations, produces samples in a very narrow band of loss.
• Most chains have a starting point falling into the 5+-gon phase and rarely escape (only the red chain found

the lower loss 6-gon region).
• The proportion of 6-gons is mostly determined by how many chains have their starting point already in the
6-gon phase. In this run, this proportion is dominated by the last orange chain.

Figure F.3: Trace plots displaying theoretical loss of the MCMC samples ordered by their MCMC iteration number
and colored by MCMC chain index (top) and the same scatter plot but colored by phase classification (bottom).
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Figure F.4: Unhealthy trace plots.
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F.4 Theory and experiments for c = 4 and c = 5

In this section we repeat the analysis of Section 4.2 for c = 4 and c = 5 with the same experimental setup as explained
at the beginning of that section. When c = 4 the 4-gon is a true parameter (it has zero loss) and any 3-gon is not, so
the theory predicts that the 4-gon must dominate the posterior for all n, as seen in Figure F.5.

Critical point Local learning coefficient λ Loss L
4-gon 4, 4.5, 5, 5.5 0

Table F.1: r = 2, c = 4

Figure F.5: r = 2, c = 4. The standard 4-gon dominates for all n.

When c = 5 the theory and experimental curves in Figure F.6 show the 4 → 5 transition. Note that 4+ is correctly
predicted to never dominate the posterior despite having lower energy than the standard 4-gon.

Critical point Local learning coefficient λ Loss L
4-gon 4, 4.5, 5, 5.5 0.06667
4+-gon 5, 5.5, 6, 6.5 0.05667
5−-gon 7 0.01583

.

Table F.2: r = 2, c = 5

Figure F.6: Proportion of Bayesian posterior density concentrated in regions Wk,σ associated to k-gons, as a function
of the number n of samples for r = 2, c = 5.

We note that the classification of MCMC samples in c = 4, 5 described in this section is slightly different from what
was described for c = 6 in Section 4.2. The main reason being that we need to handle variants of the 4-gon more
carefully in c = 4, 5.
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• For c = 4, we classify a sample (W, b) only by the number of vertices on the convex hull formed by the
column vectors with no additional subcategories defined by the number of positive biases. Theoretically we
know that there are no critical 4-gons with positive bias and the standard 4-gon is a critical point with all zero
bias and is thus susceptible to misclassification even with slight perturbation when the the number of positive
biases is counted.

• For c = 5, the situation is similar except for one extra case where need to allow for the possibility of a 4+-
gon. A sample (W, b) is classified as a 4+-gon when it has 4 vertices in its convex hull, and if bi > 0 then
li = ∥Wi∥ < 0.5.

In the cases c = 4, 5 we also manually verify the dominant phases by visually inspecting t-SNE clusters of MCMC
samples at multiple sample sizes.
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G Potential in local coordinates

Proof of Lemma 3.1. By definition

L(W, b) =
1

c

∑
i ̸=j

∫ 1

0

ReLU(Wj ·Wixi + bj)
2dxi

+

c∑
i=1

∫ 1

0

(
xi − ReLU(∥Wi∥2xi + bi)

)2
dxi

)
.

Let i, j ∈ {1, . . . , c} be such that i ̸= j. To compute the integral∫ 1

0

ReLU(Wj ·Wixi + bj)
2dxi,

we first find the region in [0, 1] on which Wj ·Wixi + bj ≥ 0. Let

Dj,i = {xi ∈ [0, 1] |Wj ·Wixi + bj ≥ 0}.

1. If Wj ·Wi > 0 and −Wj ·Wi ≤ bj ≤ 0, then

Dj,i =

[
−bj

Wj ·Wi
, 1

]
.

2. If Wj ·Wi > 0 and bj ≤ −Wj ·Wi, then
Dj,i = ∅.

3. If Wj ·Wi = 0 and bj = 0, then
Dj,i = [0, 1].

Note that in this case, Wj ·Wixi + bj = 0 for all xi ∈ [0, 1].

4. If Wj ·Wi = 0 and bj < 0, then
Dj,i = ∅.

5. If Wj ·Wi < 0 and bj ≤ 0, then
Dj,i = ∅.

6. If Wj ·Wi > 0 and bj > 0, then
Dj,i = [0, 1].

7. If Wj ·Wi = 0 and bj > 0, then
Dj,i = [0, 1].

8. If Wj ·Wi < 0 and bj ≥ −Wj ·Wi > 0, then

Dj,i = [0, 1].

9. If Wj ·Wi < 0 and −Wj ·Wi > bj > 0, then

Dj,i =

[
0,

−bj
Wj ·Wi

]
Recall the definition of Pj,i, Pi, and Qj,i from (Lemma 3.1). Then for bj ≤ 0,∫ 1

0

ReLU(Wj ·Wixi + bj)
2dxi = δ(Pj,i)

∫ 1

−bj/(Wj ·Wi)

(Wj ·Wixi + bj)
2dxi

= δ(Pj,i)

[
1

3Wj ·Wi
(Wj ·Wixi + bj)

3

]1
−bj/(Wj ·Wi)

= δ(Pj,i)
1

3Wj ·Wi
(Wj ·Wi + bj)

3.
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and for bj > 0,∫ 1

0

ReLU(Wj ·Wixi + bj)
2dxi = δ(Qj,i)

∫ −bj/(Wj ·Wi)

0

(Wj ·Wixi + bj)
2dxi

+
(
1− δ(Qj,i)

) ∫ 1

0

(Wj ·Wixi + bj)
2dxi

= δ(Qj,i)

[
1

3Wj ·Wi
(Wj ·Wixi + bj)

3

]−bj/(Wj ·Wi)

0

+
(
1− δ(Qj,i)

) [ 1

3Wj ·Wi
(Wj ·Wixi + bj)

3

]1
0

= δ(Qj,i)
1

3

(
−b3j

Wj ·Wi

)

+
(
1− δ(Qj,i)

)1
3
[(Wj ·Wi)

2 + 3(Wj ·Wi)bj + 3b2j ]

It remains to compute ∫ 1

0

(
xi − ReLU(∥Wi∥2xi + bi)

)2
dxi

for each i ∈ {1, . . . , c}. We first find the region in [0, 1] on which ∥Wi∥2xi + bi ≥ 0. Let

Di = {xi ∈ [0, 1] | ∥Wi∥2xi + bi ≥ 0}.

1. If ∥Wi∥2 > 0 and −∥Wi∥2 ≤ bi ≤ 0, then

Di =

[
−bi

∥Wi∥2
, 1

]
.

2. If ∥Wi∥2 > 0 and bi ≤ −∥Wi∥2, then
Di = ∅.

In this case ∫ 1

0

(
xi − ReLU(∥Wi∥2xi + bi)

)2
dxi =

∫ 1

0

x2
i dxi =

1

3
.

3. If ∥Wi∥2 = 0 and bi = 0, then
Di = [0, 1].

Note that in this case, ∥Wi∥2xi + bi = 0 for all xi ∈ [0, 1]. So∫ 1

0

(
xi − ReLU(∥Wi∥2xi + bi)

)2
dxi =

∫ 1

0

x2
i dxi =

1

3
.

4. If ∥Wi∥2 = 0 and bi < 0, then
Di = ∅.

In this case ∫ 1

0

(
xi − ReLU(∥Wi∥2xi + bi)

)2
dxi =

∫ 1

0

x2
i dxi =

1

3
.

5. If ∥Wi∥2 > 0 and bi > 0, then
Di = [0, 1].

6. If ∥Wi∥2 = 0 and bi > 0, then
Di = [0, 1].
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For i with bi ≤ 0, on Pi,∫ 1

0

(
xi − ReLU(∥Wi∥2xi + bi)

)2
dxi =

∫ 1

−bi/∥Wi∥2

(xi − ∥Wi∥2xi − bi)
2dxi

+

∫ −bi/∥Wi∥2

0

x2
i dxi

=

∫ 1

−bi/∥Wi∥2

(
(1− ∥Wi∥2)xi − bi

)2
dxi

+

[
1

3
x3
i

]−bi/∥Wi∥2

0

.

If ∥Wi∥ ≠ 1, then the integral is equal to

1

3

{
(1− ∥Wi∥2)2 − 3(1− ∥Wi∥2)bi + 3b2i +

b3i
∥Wi∥4

+
b3i

∥Wi∥2

}
.

If ∥Wi∥ = 1, then the integral is equal to
1

3
(3b2i + 2b3i ).

Since

lim
∥Wi∥→1

1

3

{
(1− ∥Wi∥2)2 − 3(1− ∥Wi∥2)bi + 3b2i +

b3i
∥Wi∥4

+
b3i

∥Wi∥2

}
=

1

3
(3b2i + 2b3i ),

We know that in Pi, ∫ 1

0

(
xi − ReLU(∥Wi∥2xi + bi)

)2
dxi

=
1

3

{
(1− ∥Wi∥2)2 − 3(1− ∥Wi∥2)bi + 3b2i +

b3i
∥Wi∥4

+
b3i

∥Wi∥2

}
.

For i with bi > 0,∫ 1

0

(
xi − ReLU(∥Wi∥2xi + bi)

)2
dxi =

∫ 1

0

(
xi − (∥Wi∥2xi + bi)

)2
dxi

=
1

3(1− ∥Wi∥2)
{
[(1− ∥Wi∥2)− bi]

3 + b3i
}

=
1

3

[
(1− ∥Wi∥2)2 − 3(1− ∥Wi∥2)bi + 3b2i

]
Thus, L(W, b) = 1

3cH(W, b) as claimed.

Now we introduce a new coordinate system of the parameter space which is used to analyse the local geometry around
a critical point. Let C = {{i, j} | i ̸= j ∈ {1, 2, . . . , c}}. For a subset C ⊂ C, define a subset WC of Mr,c(R), called
a chamber, by

WC = {W ∈ Mr,c(R) |Wi ·Wj > 0 if and only if {i, j} ∈ C}.

Note that

1. Some subsets C of C define an empty chamber WC = ∅. For example, when r = 2 and c = 4, the set

C = {{1, 2}, {2, 3}, {3, 4}, {4, 1}} ⊂ C

defines an empty chamber because within this set, to satisfy Wi ·Wi+1 > 0,Wi+1 ·Wi+2 > 0,Wi ·Wi+2 ≤ 0
we must have that Wi+1 is between Wi and Wi+1 on the circle. Therefore we require that the sum of angles
between Wi and Wi+1 = 2π, but each of these 4 angles must be more than π/2 so the configuration isn’t
possible.
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2. if C ⊂ C defines a nonempty chamber WC containing a W with
Wi ·Wj > 0 ∀{i, j} ∈ C and Wu ·Wv < 0 ∀{u, v} /∈ C,

then WC contains the open subset
{W ∈ Mr,c(R) |Wi ·Wj > 0 ∀{i, j} ∈ C and Wu ·Wv < 0 ∀{u, v} /∈ C}

of Mr,c(R);
3. if C ⊂ C defines a nonempty chamber WC , then for any Q ⊂ C,

{W ∈ Mr,c(R) |Wi ·Wj = 0 ∀{i, j} ∈ Q and Wu ·Wv > 0 ⇔ {u, v} ∈ C\Q}
defines a boundary of WC ;

4. for any distinct subsets C, Q of C, WC ∩WQ = ∅;
5. the union of all chambers cover Mr,c(R).

Consider a nonempty chamber WC for some C ⊂ C. Suppose that WC contains an open subset of Mr,c(R). Let
i ̸= j ∈ {1, 2, . . . , c}. If {j, i} /∈ C, then for all W ∈ WC ,

δ(Pj,i) = 0.

Thus, in WC × Rc, for each i ∈ {1, 2, . . . , c}, H−
i (W, b) (see Lemma 3.1) is given by

H−
i (W, b) =

∑
j ̸=i:{j,i}∈C

δ(Pi,j)

[
1

Wi ·Wj
(Wi ·Wj + bi)

3

]

+ δ(Pi)

[
b3i

∥Wi∥4
+

b3i
∥Wi∥2

]
+ (1− δ(Pi)) + δ(Pi)Ni.

Now we focus on the case r = 2. Let W ∈ M2,c(R). Then W is contained in some chamber WC . In the new
parametrization (l, θ), we can describe the chamber WC in a different way. Let (l1, . . . , lc, θ1, . . . , θc) be the coordi-
nate of W . For each i = 1, . . . , c, a wedge Mij is defined by

Mij =

{
(i, i+ 1, . . . , i+ j − 1), if j > 0 and θi + · · ·+ θi+j−1 < π

2 ;
∅, if j = 0 or θi + · · ·+ θi+j−1 ≥ π

2 ,

where addtions are computed cyclically. For each i = 1, . . . , c, let t(i) denote the integer such that

θi + · · ·+ θi+t(i)−1 <
π

2
and θi + · · ·+ θi+t(i) ≥

π

2
.

We use the convention where t(i) = 0 if θi ≥ π/2. Then Mij = ∅ for all j ≥ t(i). So we can list the set of all wedges
M = {Mij} into a table:

M11 M12 · · · · · · M1t(1)

M21 M21 · · · · · · M2t(2)

...

...
M(c−1)1 M(c−1)2 · · · · · · M(c−1)t(c−1)

Mc1 Mc2 · · · · · · Mct(c)

This set of wedges M describes a chamber WC containing W , where
C =

{
{1, 2},{1, 3}, . . . , {1, t(1) + 1}, {2, 3}, {2, 4}, . . . , {2, t(2) + 2}, . . . ,

. . . , {c− 1, c}, . . . , {c− 1, t(c− 1) + c− 1}, {c, 1}, . . . , {c, t(c) + c}
}
,

and the addtions are computed cyclically. For example, if c = 5, then a 5-gon has coordinate
l1 = l2 = l3 = l4 = l5;

θ1 = θ2 = θ3 = θ4 =
2π

5
.

It is contained in the interior of the chamber WC , where
C = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}}.

This chamber is described by the set of wedges:
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(1)
(2)
(3)
(4)
(5)

.

Now let WC ⊂ M2,c(R) be a nonempty chamber. Suppose that WC contains an open subset of M2,c(R). Let M be
the set of wedges describing WC . Set

1. T
(1)
Mij

=
{
(l, θ, b) | − lili+j cos

(∑
k∈Mij

θk

)
≤ bi+j

}
;

2. T
(2)
Mij

=
{
(l, θ, b) | − lili+j cos

(∑
k∈Mij

θk

)
≤ bi

}
;

3. Ti = {(l, θ, b) | − l2i ≤ bi};
4. Sij = {(l, θ, b) | − lilj cos(θi + · · · θj−1) > bi > 0}.

Then in WC × Rc, the TMS potential H(l, θ, b) in the new parametrization is

H(l, θ, b) =

c∑
i=1

δ(bi ≤ 0)H−
i (l, θ, b) + δ(bi > 0)H+

i (l, θ, b), (17)

where

H−
i (l, θ, b) =

∑
j:M(i−j)j∈M

δ(T
(1)
M(i−j)j

)

[
li−j li cos

(∑
k∈M(i−j)j

θk
)
+ bi

]3
li−j li cos

(∑
k∈M(i−j)j

θk
)

+
∑

j:Mij∈M
δ(T

(2)
Mij

)

[
lili+j cos

(∑
k∈Mij

θk
)
+ bi

]3
lili+j cos

(∑
k∈Mij

θk
)

+ δ(Ti)

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]
+
(
1− δ(Ti)

)
and

H+
i (l, θ, b) =

∑
j ̸=i

δ(Sij)

[
−b3i

lilj cos(θi + θi+1 + · · · θj−1)

]

+
(
1− δ(Sij)

)[(
lilj cos(θij)

)2
+ 3
(
lilj cos(θij)

)
bi + 3b2i

]
+
[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i
]
,

where θij = θi + θi+1 + · · ·+ θj−1 is the angle between Wi and Wj .
Remark G.1. If a critical point of H is contained in the interior of a chamber (see Appendix H.1), then there is an
open neighbourhood of the critical point in which H is of the above form. However, critical points are not always
contained in the interior of some chamber. If a critical point is contained in the boundary of different chambers (see
Appendix J and Appendix H.3), then extra efforts are required for analysing the local geometry around the critical
point.
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H Derivation of local learning coefficients

H.1 k-gons with negtive bias for k = c /∈ 4Z

In this section, we show that for c ∈ {5, 6, 7}, the c-gon with coordinate

l1 = · · · = lc = x∗, θ1 = · · · = θc = α =
2π

c
, b1 = · · · = bc = y∗,

where the values of x∗ and y∗ is given in Table H.1, is a non-degenerate critical point of the TMS potential. Therefore,
the local learning coefficient of c-gon is (3c− 1)/2.

c x∗ y∗

5 1.17046 −0.28230
6 1.32053 −0.61814
7 1.44839 −0.96691

Table H.1: Parameters of c-gons.

Let c be an integer greater than or equal to 4. We consider the case where c is not a multiple of 4. Consider the c-gon
with coordinate (l∗, θ∗, b∗)

l∗ : l1 = · · · = lc = x, θ∗ : θ1 = · · · = θc = α =
2π

c
, b∗ : b1 = · · · = bc = y,

for some x > 0 and y < 0. The chamber containing c-gons is described by the following wedges (see Appendix G):

(1) (1, 2) · · · · · · (1, 2, . . . , s)
(2) (2, 3) · · · · · · (2, 3, . . . , s+ 1)

...
... · · · · · ·

...
(c+ 1− s) (c+ 1− s, c+ 2− s) · · · · · · (c+ 1− s, c+ 2− s, . . . , c)
(c+ 2− s) (c+ 2− s, c+ 3− s) · · · · · · (c+ 2− s, c+ 3− s, . . . , c, 1)

...
... · · · · · ·

...
(c− 1) (c− 1, c) · · · · · · (c− 1, c, 1, . . . , s− 2)
(c) (c, 1) · · · · · · (c, 1, 2, . . . , s− 1)

where s is the unique integer in the interval
[
c
4 − 1, c

4

)
. Let Mij be the wedge in the (i, j)-position in the above table.

Then Mij = (i, i + 1, . . . , i + j − 1), where additions are computed cyclically. Then the local TMS potential (see
Appendix G) is

H(l, θ, b) =
∑

Mij∈M
δ(T

(1)
Mij

)
1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

+
∑

Mij∈M
δ(T

(2)
Mij

)
1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

3

+

c∑
i=1

δ(Ti)

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]
+ (1− δ(Ti)),

where

1. T
(1)
Mij

=
{
(l, θ, b) | − lili+j cos

(∑
k∈Mij

θk

)
≤ bi+j

}
;

2. T
(2)
Mij

=
{
(l, θ, b) | − lili+j cos

(∑
k∈Mij

θk

)
≤ bi

}
;

3. Ti = {(l, θ, b) | − l2i ≤ bi};
4. θ1 + θ2 + · · ·+ θc = 2π.
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Consider the open subset of the parameter space defined by

−lili+j cos

 ∑
k∈Mij

θk

 < bi+j , −lili+j cos

 ∑
k∈Mij

θk

 < bi

for all Mij and
−l2i < bi

for all i = 1, . . . , c. In this open subset, we have

H(l, θ, b) =
∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

+
∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

3

+

c∑
i=1

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]
,

with constraint θ1 + θ2 + · · · + θc = 2π. It follows from the Lagrangian multiplier method that a point (l∗, θ∗, b∗)
is a critical point of H(l, θ, b) with constraint θ1 + · · · + θc = 2π if and only if there exists λ ∈ R such that for all
a = 1, 2, . . . , c,

1. ∂
∂θa

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = λ;

2. ∂
∂la

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = 0;

3. ∂
∂ba

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = 0.

We compute the partial derivative of H(l, θ, b) with respect to ba:

∂

∂ba
H(l, θ, b) =

∑
Mij :i+j=a

3

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

2

+
∑

Mij :i=a

3

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

2

− 3(1− l2a) + 6ba +
3

l4a
b2a +

3

l2a
b2a.

We list all Mij with i = a and all Mij with i+ j = a:

i = a : (a) (a, a+ 1) · · · · · · (a, a+ 1, . . . , a+ s− 1)
i+ j = a : (a− 1) (a− 2, a− 1) · · · · · · (a− s, . . . , a− 2, a− 1)

Then

∂

∂ba

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = x2

3 + 6

s∑
j=1

cos(jα)

+
y2

x2

3 + 6

s∑
j=1

1

cos(jα)


+ y(12s+ 6) + 3

y2

x4
− 3.
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Multiplying both sides of the equation

x2

3 + 6

s∑
j=1

cos(jα)

+
y2

x2

3 + 6

s∑
j=1

1

cos(jα)

+ y(12s+ 6) + 3
y2

x4
− 3 = 0

by 1
3x

4, we have

x6

1 + 2

s∑
j=1

cos(jα)

+ x2y2

1 + 2

s∑
j=1

1

cos(jα)

+ 2x4y(2s+ 1) + y2 − x4 = 0.

Let G(s) = 1 + 2
∑s

j=1 cos(jα), H(s) = 1 + 2
∑s

j=1
1

cos(jα) , M(s) = 1 + 2s. Then we obtain a parametrized
polynomial equation in two variables:

x6G(s) + x2y2H(s) + 2x4yM(s) + y2 − x4 = 0.

Now we compute the partial derivative of H(l, θ, b) with respect to la:

∂

∂la
H(l, θ, b) =

∂

∂la

∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

+
∂

∂la

∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

3

− 4(1− l2a)la + 6laba − 4
b3a
l5a

− 2
b3a
l3a
.

From the list of all Mij with i = a and all Mij with i+ j = a, we have

∂

∂la

∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

=

s∑
j=1

3
(
lala+j cos

(∑
k∈Maj

θk

)
+ ba+j

)2
la

−

(
lala+j cos

(∑
k∈Maj

θk

)
+ ba+j

)3
l2ala+j cos

(∑
k∈Maj

θk

)
+

s∑
j=1

3
(
la−j la cos

(∑
k∈M(a−j)j

θk

)
+ ba

)2
la

−

(
la−j la cos

(∑
k∈M(a−j)j

θk

)
+ ba

)3
la−j l2a cos

(∑
k∈M(a−j)j

θk

) .

So

∂

∂la

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

= 2

s∑
j=1

(
3
(
x2 cos(jα) + y

)2
x

−
(
x2 cos(jα) + y

)3
x3 cos(jα)

)
Similarly,

∂

∂la

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

3

= 2

s∑
j=1

(
3
(
x2 cos(jα) + y

)2
x

−
(
x2 cos(jα) + y

)3
x3 cos(jα)

)
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Thus,

∂

∂la

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = x3

4 + 8

s∑
j=1

cos2(jα)

+ xy

6 + 12

s∑
j=1

cos(jα)


− y3

x3

2 + 4

s∑
j=1

1

cos(jα)

− 4x− 4
y3

x5
.

Multiplying both sides of the equation

x3

4 + 8

s∑
j=1

cos2(jα)

+ xy

6 + 12

s∑
j=1

cos(jα)

− y3

x3

2 + 4

s∑
j=1

1

cos(jα)


− 4x− 4

y3

x5
= 0

by 1
2x

5, we have

2x8

1 + 2

s∑
j=1

cos2(jα)

+ 3x6y

1 + 2

s∑
j=1

cos(jα)

− x2y3

1 + 2

s∑
j=1

1

cos(jα)


− 2x6 − 2y3 = 0.

Let F (s) = 1 + 2
∑s

j=1 cos
2(jα). Then we obtain a parametrized polynomial equation in two variables:

2x8F (s) + 3x6yG(s)− x2y3H(s)− 2x6 − 2y3 = 0.

Therefore, we need to determine whether the system of two parametrized polynomial equations in two variables

x6G(s) + x2y2H(s) + 2x4yM(s) + y2 − x4 = 0

2x8F (s) + 3x6yG(s)− zy3H(s)− 2x6 − 2y3 = 0

where

1. F (s) = 1 + 2
∑s

j=1 cos
2(jα);

2. G(s) = 1 + 2
∑s

j=1 cos(jα);

3. H(s) = 1 + 2
∑s

j=1
1

cos(jα) ;

4. M(s) = 1 + 2s.

have common solutions in R>0 × R<0 with −x2 cos(sα) < y or not . Now we compute the partial derivative of
H(l, θ, b) with respect to θa.

∂

∂θa
H(l, θ, b) =

∂

∂θa

∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

+
∂

∂θa

∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

3

.

We list all Mij containing a:

Ma1 Ma2 · · · · · · · · · Mas

M(a−s+1)s

M(a−s+2)(s−1) M(a−s+2)s

...
M(a−2)3 · · · · · · M(a−2)s

M(a−1)2 M(a−1)3 · · · · · · M(a−1)s
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Rearrange these wedges in terms of the length:

length 1: Ma1

length 2: Ma2 M(a−1)2

length 3 Ma3 M(a−1)3 M(a−2)3

...
length s− 1: Ma(s−1) M(a−1)(s−1 · · · M(a−s+2)(s−1)

length s: Mas M(a−1)s · · · M(a−s+2)s M(a−s+1)s

Note that for j = 1, . . . , s, there exactly j wedges of length j containing a. Then

∂

∂θa

∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

=
∑

Mij :a∈Mij

−3
[
lili+j cos

(∑
k∈Mij

θk

)
+ bi+j

]2
sin
(∑

k∈Mij
θk

)
cos
(∑

k∈Mij
θk

)
+

∑
Mij :a∈Mij

sin
(∑

k∈Mij
θk

) [
lili+j cos

(∑
k∈Mij

θk

)
+ bi+j

]3
lili+j cos2

(∑
k∈Mij

θk

) .

Then

∂

∂θa

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

=

s∑
j=1

j ·

(
−3
[
x2 cos (jα) + y

]2
sin (jα)

cos (jα)
+

sin (jα)
[
x2 cos (jα) + y

]3
x2 cos2 (jα)

)
.

Similarly,

∂

∂θa

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

3

=

s∑
j=1

j ·

(
−3
[
x2 cos (jα) + y

]2
sin (jα)

cos (jα)
+

sin (jα)
[
x2 cos (jα) + y

]3
x2 cos2 (jα)

)
.

Thus,

∂

∂θa

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = 2

s∑
j=1

j ·
(−3

[
x2 cos (jα) + y

]2
sin (jα)

cos (jα)

+
sin (jα)

[
x2 cos (jα) + y

]3
x2 cos2 (jα)

)
,

which is independent of a. So if the system of polynomial equations

x6G(s) + x2y2H(s) + 2x4yM(s) + y2 − x4 = 0

2x8F (s) + 3x6yG(s)− x2y3H(s)− 2x6 − 2y3 = 0

has a common solution (x∗, y∗) ∈ R>0 × R<0 with −x2 cos(sα) < y, then the Lagrangian multiplier is

2

s∑
j=1

j ·

(
−3
[
(x∗)2 cos (jα) + y∗

]2
sin (jα)

cos (jα)
+

sin (jα)
[
(x∗)2 cos (jα) + y∗

]3
(x∗)2 cos2 (jα)

)
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and the Lagrangian multipler method implies that the c-gon with coordinate

l1 = · · · = lc = x∗, b1 = · · · = bc = y∗, θ1 = · · · = θc = α =
2π

c
,

is a critical point of H(l, θ, b) with constraint θ1 + · · · + θc = 2π. So it remains to determine whether the system of
two parametrized polynomial equations in two variables

x6G(s) + x2y2H(s) + 2x4yM(s) + y2 − x4 = 0

2x8F (s) + 3x6yG(s)− x2y3H(s)− 2x6 − 2y3 = 0

have common solutions (x∗, y∗) ∈ R>0 × R≤0 with −x2 cos(sα) < y or not. We compute the common solution
using Mathematica.

1. c = 5: in this case, s = 1. Then (x∗, y∗) ≈ (1.17046,−0.28230) is the unique common solution such
that −x2 cos(2π/5) < y. Moreover, the Hessian of H at this 5-gon is non-degenerate. So the 5-gon with
coordinate:

l1 = l2 = · · · = l5 = x ≈ 1.17046;

θ1 = θ2 = · · · = θ4 =
2π

5
;

b1 = b2 = · · · = b5 = y ≈ −0.28230,

is a non-degenerate critical point. So its local learning coefficient is (3c− 1)/2 = 7.
2. c = 6: in this case s = 1. Then (x∗, y∗) ≈ (1.32053,−0.61814) is the unique common solution such

that −x2 cos(π/3) < y. Moreover, the Hessian of H at this 6-gon is non-degenerate. So the 6-gon with
coordinate:

l1 = l2 = · · · = l6 ≈ 1.32053;

θ1 = θ2 = · · · = θ5 =
π

3
;

b1 = b2 = · · · = b6 ≈ −0.61814,

is a non-degenerate critical point. So its learning coefficient is (3c− 1)/2 = 8.5.
3. c = 7: in this case s = 1. Then (x∗, y∗) ≈ (1.44839,−0.96691) is the unique common solution such

that −x2 cos(2π/7) < y. Moreover, the Hessian of H at this 7-gon is non-degenerate. So the 5-gon with
coordinate:

l1 = l2 = · · · = l7 ≈ 1.44839;

θ1 = θ2 = · · · = θ6 =
2π

7
;

b1 = b2 = · · · = b7 ≈ −0.96691,

is a non-degenerate critical point. So itslocal learning coefficient is (3c− 1)/2 = 10.
4. c = 9: in this case s = 2. There is no common solution.
5. c = 10: in this case s = 2. There is no common solution.
6. c = 11: in this case s = 2. There is no common solution.
7. c = 13: in this case s = 3. There is no common solution.
8. We checked that for any 9 ≤ c ≤ 203 which is not a multiple of 4, there is no common solution.

H.2 k-gons with negative bias for k = c ∈ 4Z

In this section, we show that for c = 8, the 8-gon with coordinate

l1 = l2 = · · · = l8 ≈ 1.55041, θ1 = θ2 = · · · = θ8 =
π

4
, b1 = b2 = · · · = b8 ≈ −1.29122,

is a non-degenerate critical point of the TMS potential. So the local learning coefficient of 8-gon is 11.5. Let c > 4
being a multiple of 4. A c-gon has θ-coordinate:

θ1 = θ2 = · · · = θc =
2π

c
.

46



Dynamical versus Bayesian Phase Transitions in a Toy Model of Superposition

Let s = c/4− 1 ∈ Z. Then (s+ 1) · (2π/c) = π/2. So

Wi ·Wi+s = lili+s cos

(
(s+ 1) · 2π

c

)
= lili+s cos

(
(s+ 1) · π

2

)
= 0

for all i = 1, . . . , c. So c-gons are on the boundaries of some chambers.

Since c > 4, s ≥ 1. Let M = {Mij} be wedges describing a chamber whose boundary contains c-gons. If bi < 0 for
all i = 1, . . . , c, then the TMS potential (see Appendix G) is

H(l, θ, b) =
∑

Mij∈M
δ(T

(1)
Mij

)
1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

+
∑

Mij∈M
δ(T

(2)
Mij

)
1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

3

+

c∑
i=1

δ(Ti)

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]
+ (1− δ(Ti)),

where

1. T
(1)
Mij

=
{
(l, θ, b) | − lili+j cos

(∑
k∈Mij

θk

)
≤ bi+j

}
;

2. T
(2)
Mij

=
{
(l, θ, b) | − lili+j cos

(∑
k∈Mij

θk

)
≤ bi

}
;

3. Ti = {(l, θ, b) | − l2i ≤ bi};

4. θ1 + θ2 + · · ·+ θc = 2π.

Consider the c-gon with coordinate

l∗ : l1 = · · · = lc = x, θ∗ : θ1 = · · · = θc = α =
2π

c
, b∗ : b1 = · · · = bc = y

for some x > 0 and y < 0. Suppose that −x2 < −x2 cos(α) < · · · < −x2 cos(s · α) < y.

Lemma H.1. The c-gon (l∗, θ∗, b∗) has an open neighbourhood in which the TMS potential is

H(l, θ, b) =
∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

+
∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

3

+

c∑
i=1

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]
,

where θ1 + θ2 + · · ·+ θc = 2π, and M = {Mij} is

(1) (1, 2) · · · · · · (1, 2, . . . , s)
(2) (2, 3) · · · · · · (2, 3, . . . , s+ 1)

...
... · · · · · ·

...
(c+ 1− s) (c+ 1− s, c+ 2− s) · · · · · · (c+ 1− s, c+ 2− s, . . . , c)
(c+ 2− s) (c+ 2− s, c+ 3− s) · · · · · · (c+ 2− s, c+ 3− s, . . . , c, 1)

...
... · · · · · ·

...
(c− 1) (c− 1, c) · · · · · · (c− 1, c, 1, . . . , s− 2)
(c) (c, 1) · · · · · · (c, 1, 2, . . . , s− 1)

.
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Proof. Since x > 0 and y < 0, there are positive small real numbers ϵx, ϵy such that x− ϵx > 0 and y+ ϵb < 0. Then

y + ϵb
−(x+ ϵx)2

is a positive number. Then there exists γ > 0 such that

cos
(π
2
− γ
)
<

y + ϵb
−(x+ ϵx)2

.

Let ϵθ = γ/(s+ 1). Consider the open neighbourhood of (l∗, θ∗, b∗) given by

(x− ϵx, x+ ϵx)× (α− ϵθ, α+ ϵθ)× (y − ϵb, y + ϵb).

Let (l, θ, b) be a point in this open neighbourhood. Consider for any wedge Mij containing more than s numbers.
Without loss of generality, assume that Mij contain s+ 1 elements. If

∑
k∈Mij

θk > π/2, then

−lili+j cos

 ∑
k∈Mij

θk

 > 0 > y + ϵb.

Otherwise, suppose
∑

k∈Mij
θk ≤ π/2. Then

−lili+j cos

 ∑
k∈Mij

θk

 > −(x+ ϵx)
2 cos

 ∑
k∈Mij

θk


> −(x+ ϵx)

2 cos

(
(s+ 1)×

(
2π

n
− ϵθ

))
= −(x+ ϵx)

2 cos
(π
2
− γ
)

> y + ϵb
> bi or bi+j .

Thus (l, θ, b) /∈ T
(1)
Mij

and (l, θ, b) /∈ T
(2)
Mij

. Thus, the term in H(l, θ, b) indexed by this Mij disappears. So only Mij

containing less than (s+ 1) numbers remain in the sum.

It follows from the calculations in (Appendix H.1) that

∂

∂θa

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b)

is independent of a. Moreover, the same calculations show that

∂

∂ba

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = 0

and
∂

∂la

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = 0

give rise to a system of parametrized polynomial equations in x and y:

x6G(s) + x2y2H(s) + 2x4yM(s) + y2 − x4 = 0

2x8F (s) + 3x6yG(s)− x2y3H(s)− 2x6 − 2y3 = 0

where

1. F (s) = 1 + 2
∑s

j=1 cos
2(jα);

2. G(s) = 1 + 2
∑s

j=1 cos(jα);

3. H(s) = 1 + 2
∑s

j=1
1

cos(jα) ;
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4. M(s) = 1 + 2s.

We compute the common solution using Mathematica.

1. c = 8: in this case, s = 1. Then (x∗, y∗) ≈ (1.55045,−1.29119) is a common solution such that
−x2 cos(π/4) < y. Moreover, the Hessian of H(l, θ, b) at this 8-gon is non-degenerate. So the 8-gon
with coordinate:

l1 = l2 = · · · = l8 ≈ 1.55045;

θ1 = θ2 = · · · = θ8 =
π

4
;

b1 = b2 = · · · = b8 ≈ −1.29119,

is a non-degenerate critical point. So its local learning coefficient is (3c− 1)/2 = 11.5

2. n = 12: in this case, s = 2. Then (x∗, y∗) ≈ (1.03322,−0.46654) and (x∗, y∗) ≈ (1.24975,−0.85483) are
common solutions such that −x2 cos(π/6) < y.

3. We plot the level sets of two polynomial equations for 1 ≤ s ≤ 50. There is always a common solution.

H.3 k-gons with negative bias for k < c

Now for a fixed c, we discuss arbitrary k-gons where k ≤ c. A k-gon is obtained by shrinking c − k Wi’s to zero.
Without loss of generality, we assume that Wc,Wc−1, . . . ,Wk+1 are shrinking to zero. So a k-gon is on the boundary
of some chamber. Note that different angles between Wi and Wj for i, j ∈ {c − k + 1, . . . , c} might give different
chambers whose boundary contains the k-gon. The following example illustrates the idea. Let c = 6 and k = 5. Then
there are three different chambers whose boundary contains the 5-gon.

1. Consider a family of 6-gons with coordinate l1 = l2 = l3 = l4 = l5 = l, l6 = u, θ1 = θ2 = θ3 = θ4 = 2π
5 ,

θ5 = α where l, u > 0 and α ∈
[
0, π

10

)
. This family of 6-gons is contained in the chamber described by the

following wedges:

(1)
(2)
(3)
(4) (4, 5)
(5) (5, 6)
(6)

The 5-gon is obtained from this family of 6-gons by taking the limit as u → 0. So the 5-gon is on the
boundary of this chamber.

2. Consider another family of 6-gons with coordinate l1 = l2 = l3 = l4 = l5 = l, l6 = u, θ1 = θ2 = θ3 = θ4 =
2π
5 , θ5 = α where l, u > 0 and α ∈

[
π
10 ,

3π
10

]
. This family of 6-gons is contained in the chamber described

by the following wedges:

(1)
(2)
(3)
(4)
(5) (5, 6)
(6)

The 5-gon is obtained from this family of 6-gons by taking the limit as u → 0. So the 5-gon is on the
boundary of this chamber.

3. Finally, consider the family of 6-gons with coordinate l1 = l2 = l3 = l4 = l5 = l, l6 = u, θ1 = θ2 =
θ3 = θ4 = 2π

5 , θ5 = α where l, u > 0 and α ∈
(
3π
10 ,

2π
5

]
. This family of 6-gons is contained in the chamber

described by the following wedges:

(1)
(2)
(3)
(4)
(5) (5, 6)
(6) (6, 1)
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The 5-gon is obtained from this family of 6-gons by taking the limit as u → 0. So the 5-gon is on the
boundary of this chamber.

Theorem H.1. Let k ∈ Z>4 and s be the unique integer in the interval [k4 − 1, k
4 ). If a k-gon with coordinate

l1 = · · · = lk = x; θ1 = · · · = θk =
2π

k
; b1 = · · · = bk = y

for some x > 0 and y < 0 satisfying

−x2 cos

(
s · 2π

k

)
≤ y

is a critical point of H(l, θ, b) with constraint θ1 + · · ·+ θk = 2π for c = k, then the k-gons with coordinate

l1 = · · · = lk = x, lk+1 = · · · = lc = 0;

θ1 = · · · = θk−1 =
2π

k
, θk + · · ·+ θc =

2π

k
;

b1 = · · · = bk = y, bk+1, . . . , bc < 0,

are critical points of H(l, θ, b) with constraint θ1 + · · ·+ θc = 2π for any c > k.

Proof. We first show that for any bk+1, . . . , bc < 0 and θk, . . . , θc ∈ [0, 2π) with θk + · · · + θc = 2π/k, the k-gon
(l∗, θ∗, b∗) with coordinate

l1 = · · · = lk = x, lk+1 = · · · = lc = 0;

θ1 = · · · = θk−1 = α =
2π

k
, θk, . . . , θc ∈ [0, 2π);

b1 = · · · = bk = y, bk+1, . . . , bc < 0

has an open neighbourhood in which only the following types of wedges showing up in H(l, θ, b):

1. Mij does not contain any of {k, k + 1, . . . , c} and has length at most s;

2. Mij contains (k, k + 1, . . . , c) and has length at most s+ c− k.

Since each coordinate in b∗ is less than zero, there is an open neighbourhood B of b∗ contained in Rc
<0. Since

l1 = · · · = lk = x > 0 and lk+1 = · · · = lc = 0, there exists an open neighbourhood L of l∗ contained in
Rk

>0 × Rc−k
≥0 . If k is not a multiple of 4, then s · α < π/2 and (s+ 1) · α > π/2. So we can perturb each θi to obtain

an open neighbourhood Θ of θ∗ in which

• θi + · · ·+ θi+s−1 < π/2 and θi + · · · θi+s > π/2 for {i, i+ 1, . . . , i+ s} ⊂ {1, . . . , k − 1};

• θi+· · ·+θk−1+θk+· · ·+θc+θ1+· · ·+θs−1−k+i < π/2, θi+· · ·+θk−1+θk+· · ·+θc+θ1+· · ·+θs−k+i >
π/2, and θi−1 + θi + · · ·+ θk−1 + θk + · · ·+ θc + θ1 + · · ·+ θs−1−k+i < π/2.

If k is a multiple of 4, then s · α < π/2 and (s + 1) · α = π/2. So we can perturb each θi to obtain an open
neighbourhood Θ of θ∗ in which

• θi + · · ·+ θi+s−1 < π/2 and θi + · · · θi+s is closed to π/2 for {i, i+ 1, . . . , i+ s} ⊂ {1, . . . , k − 1};

• θi+ · · ·+θk−1+θk+ · · ·+θc+θ1+ · · ·+θs−1−k+i < π/2, θi+ · · ·+θk−1+θk+ · · ·+θc+θ1+ · · ·+θs−k+i

is closed to π/2, and θi−1 + θi + · · ·+ θk−1 + θk + · · ·+ θc + θ1 + · · ·+ θs−1−k+i < π/2.

Then L × Θ × B is an open neighbourhood of (l∗, θ∗, b∗). Since lk+1 = · · · = lc = 0, we can shrink L so that for
every (l, θ, b) ∈ L×Θ×B,

−lili+j cos

 ∑
k∈Mij

θk

 > bi, −lili+j cos

 ∑
k∈Mij

θk

 > bi+j

for all Mij with either i ∈ {k + 1, . . . , c} or i+ j − 1 ∈ {k, . . . , c− 1}, and

−l2i > bi
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for all i = k + 1, . . . , c. Since

−x2 < · · · < −x2 cos

(
(s− 1) · 2π

k

)
< −x2 cos

(
s · 2π

k

)
< y,

we can shrink L×Θ×B so that for every (l, θ, b) ∈ L×Θ×B,

−lili+j cos

 ∑
k∈Mij

θk

 < bi, −lili+j cos

 ∑
k∈Mij

θk

 < bi+j

for all i, j with i, i+ j ∈ {1, . . . , k} and
−l2i < bi

for all i = 1, . . . , k. Since any Mij containing only some of {k, k + 1, . . . , c} has either i ∈ {k + 1, . . . , c} or
i+ j − 1 ∈ {k, . . . , c− 1}, we know that for Mij containing only some of {k, k + 1, . . . , c}, we have

(l, θ, b) /∈ T
(1)
Mij

and (l, θ, b) /∈ T
(2)
Mij

for all (l, θ, b) ∈ L × Θ × B. We have shown that if Mij contains some of {k, k + 1, . . . , c}, then it must contain
(k, k + 1, . . . , c). Moreover, for k not being a multiple of 4, since

• θi+· · ·+θk−1+θk+· · ·+θc+θ1+· · ·+θs−1−k+i < π/2, θi+· · ·+θk−1+θk+· · ·+θc+θ1+· · ·+θs−k+i >
π/2, and θi−1 + θi + · · ·+ θk−1 + θk + · · ·+ θc + θ1 + · · ·+ θs−1−k+i < π/2,

we know that if Mij contains (k, k+ 1, . . . , c), then it has length at most s+ c− k. For k being a multiple of 4, since

• θi+ · · ·+θk−1+θk+ · · ·+θc+θ1+ · · ·+θs−1−k+i < π/2, θi+ · · ·+θk−1+θk+ · · ·+θc+θ1+ · · ·+θs−k+i

is closed to π/2, and θi−1 + θi + · · ·+ θk−1 + θk + · · ·+ θc + θ1 + · · ·+ θs−1−k+i < π/2,

by the same argument we use in the proof of Lemma H.1, we know that if Mij contains (k, k + 1, . . . , c), then it has
length at most s + c − k. Now for Mij not containing any of {k, k + 1, . . . , c}, if k is not a multiple of 4, it follows
from

• θi + · · ·+ θi+s−1 < π/2 and θi + · · · θi+s > π/2 for {i, i+ 1, . . . , i+ s} ⊂ {1, . . . , k − 1}

that Mij has length at most s. If k is a multiple of 4, it follows from

• θi + · · ·+ θi+s−1 < π/2 and θi + · · · θi+s is closed to π/2 for {i, i+ 1, . . . , i+ s} ⊂ {1, . . . , k − 1}

and the same argument in Lemma H.1 that Mij has length at most s. Therefore in the open neighbourhood L×Θ×B
of (l∗, θ∗, b∗), only the following types of wedges showing up in H:

1. Mij does not contain any of {k, k + 1, . . . , c} and has length at most s;

2. Mij contains (k, k + 1, . . . , c) and has length at most s+ c− k.

For a = k + 1, . . . , c, since (L×Θ× B) ∩ Ta = ∅, and (L×Θ× B) ∩ T
(1)
Mij

= (L×Θ× B) ∩ T
(2)
Mij

= ∅ for Mij

with either i ∈ {k + 1, . . . , c} or i+ j − 1 ∈ {k, . . . , c− 1}, we know that

∂

∂ba

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = 0

and
∂

∂la

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = 0.

For a = 1, . . . , k, since

l1 = · · · = lk = x; θ1 = · · · = θk =
2π

k
; b1 = · · · = bk = y
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is a critical point of the TMS potential for c = k, we know that

∂

∂ba

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = 0

and
∂

∂la

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = 0.

For a = 1, . . . , c, we have

∂

∂θa

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b)

= 2

s∑
j=1

j ·

(
−3
[
x2 cos (jα) + y

]2
sin (jα)

cos (jα)
+

sin (jα)
[
x2 cos (jα) + y

]3
x2 cos2 (jα)

)
which is independent of a. Therefore, by Lagrangian multiplier method, the k-gon (l∗, θ∗, b∗) is a critical point of
H(l, θ, b) with constraint θ1 + · · ·+ θc = 2π.

In the previous example, we see that for n = 6, there are three different chambers whose boundary contains the 5-gon.
As different chambers give different explicit form of H , one might think H is not differentiable at the 5-gon. However,
in our proof, we show that the 5-gon has an open neighbourhood in which H has the explicit form

∑
Mij∈M

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

+
∑

Mij∈M

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

3

+

5∑
i=1

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]
+ 1,

where θ1 + · · ·+ θ6 = 2π and M consists of the following wedges:

(1)
(2)
(3)
(4)
(5, 6)

.

So H is actually analytic at the 5-gon.

Corollary H.1. Let k ∈ Z>4 and s be the unique integer in the interval [k4 − 1, k
4 ). Let H(k)(l, θ, b) denote the TMS

potential for c = k. Suppose that a k-gon with coordinate

l1 = · · · = lk = x; θ1 = · · · = θk =
2π

k
; b1 = · · · = bk = y

for some x > 0 and y < 0 satisfying

−x2 cos

(
s · 2π

k

)
≤ y

is a critical point of H(k)(l, θ, b). Let Πc,k be the projection defined by

Πc,k : (l1, . . . , lc, θ1, . . . , θc−1, b1, . . . , bc) 7→ (l1, . . . , lk, θ1, . . . , θk−1, b1, . . . , bk).

Then for c > k, the k-gon with coordinate

l1 = · · · = lk = x, lk+1 = · · · = lc = 0;

θ1 = · · · = θk−1 =
2π

k
, θk + · · ·+ θc =

2π

k
;

b1 = · · · = bk = y, bk+1, . . . , bc < 0,
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has an open neighbourhood in which

H(l, θ, b) = H(k) ◦Πc,k(l, θ, b) + (c− k).

Proof. Let τ = (k, k + 1, . . . , c). From the proof of the theorem, we know that for c > k, the k-gon

l1 = · · · = lk = x, lk+1 = · · · = lc = 0;

θ1 = · · · = θk−1 =
2π

k
, θk + · · ·+ θc =

2π

k
;

b1 = · · · = bk = y, bk+1, . . . , bc < 0,

has an open neighbourhood in which

H(l, θ, b) =
∑

Mij∈M

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

+
∑

Mij∈M

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

3

+

k∑
i=1

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]
+ (c− k),

where θ1 + · · ·+ θc = 2π and M is

(1) (1, 2) · · · · · · (1, 2, . . . , s)
(2) (2, 3) · · · · · · (2, 3, . . . , s+ 1)

...
... · · · · · ·

...
(k − s) (k − s, k − s+ 1) · · · · · · (k − s, . . . , k − 1)

(k − s+ 1) (k − s+ 1, k − s+ 2) · · · · · · (k − s+ 1, . . . , k − 1, τ)
(k − s+ 2) (k − s+ 1, k − s+ 2) · · · · · · (k − s+ 1, . . . , k − 1, τ, 1)

...
... · · · · · ·

...
(τ ) (τ, 1) · · · · · · (τ, 1, . . . , s− 1)

.

Let H(k)(l1, . . . , lk, θ1, . . . , θk−1, b1, . . . , bk) denote the TMS potential for c = k. Consider the projection

Πc,k : (l1, . . . , lc, θ1, . . . , θc−1, b1, . . . , bc) 7→ (l1, . . . , lk, θ1, . . . , θk−1, b1, . . . , bk).

Since ∑
i∈τ

θi = 2π − (θ1 + · · ·+ θk−1),

we have
H(l, θ, b) = H(k) ◦Πc,k + (c− k).

Since the c-gons are non-degenerate (modulo O(c)-action) critical points for c = 5, 6, 7, 8, the corollary implies that
for c > k and k ∈ {5, 6, 7, 8}, the k-gon is a degenerate critical point but it is minimally singular in the sense of the
potential H being locally a sum of squares with all squares having positive coefficients around the k-gon. We can
compute the local learning coefficient of each k-gon for k = 5, 6, 7, 8:

53



Dynamical versus Bayesian Phase Transitions in a Toy Model of Superposition

Critical point Local learning coefficient L
5 7 (0.23738 + c− 5)/3c
6 8.5 (0.86746 + c− 6)/3c
7 10 (1.74870 + c− 7)/3c
8 11.5 (2.77311 + c− 8)/3c

Table H.2: Local learning coefficients and losses for k-gons
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I Including positive biases

In this section, we discuss the kσ+-gon defined in Section 3.2. We show that for c = 6, 5+-gon is a critical point and
its local learning coefficient is 8.5. We also show that in general kσ+-gons are critical points. Let WC be a nonempty
chamber. Suppose that WC contains an open subset of M2,c(R). Let M be the set of wedges describing WC . Recall
that the local TMS potential is given by (17) in Appendix G. Let’s first discuss c = 6. Consider the 5-gon (l∗, θ∗, b∗)
with coordinate

l∗ : l1 = · · · = l5 = x ≈ 1.17046, l6 = 0;

θ∗ : θ1 = · · · = θ4 =
2π

5
, θ5 + θ6 =

2π

5
;

b∗ : b1 = · · · = b5 = y ≈ −0.28230, b6 = z ∈ R>0.

In Appendix H.3, we see that depending on the value of θ5, there are three different chambers whose boundary
containing the 5-gon, but for the negative bias case (bi < 0 for all i = 1, . . . , c), there is an open neighbourhood in
which the local TMS potential is smooth (Corollary H.1). Now we claim that this holds for the general case, i.e. there
is an open neighbourhood of the 5-gon in which the local TMS potential is smooth. Since l6 = 0 and bi < 0 for all
i = 1, . . . , 5, we know that

− l6l1 cos(θ6) = 0 > b1, l6l2 cos(θ6 + θ1) = 0 > b2,

− l5l6 cos(θ5) = 0 > b5, −l4l6 cos(θ4 + θ5) = 0 > b4

So there is an open neighbourhood U of the 5-gon in which these inequalities hold. Thus, in U , the wedges appearing
in the local TMS potential are

(1)
(2)
(3)
(4)
(5, 6)

.

Moreover, since b6 > 0, we have
−l6li cos(θ6 + · · ·+ θi−1) = 0 < bi,

for all i = 1, . . . , 5. We can shrink U so that these inequalities hold in U . Thus, in U , δ(S6j) = 0 for all j = 1, . . . , 5.
Therefore, the local TMS potential is

4∑
i=1

1

lili+1 cos(θi)

(
lili+1 cos(θi) + bi

)3

+
1

l5l1 cos(θ5 + θ6)

(
l5l1 cos(θ5 + θ6) + b5

)3

+

4∑
i=1

1

lili+1 cos(θi)

(
lili+1 cos(θi) + bi+1

)3

+
1

l5l1 cos(θ5 + θ6)

(
l5l1 cos(θ5 + θ6) + b1

)3

+

5∑
i=1

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]

+

5∑
i=1

[(
l6li cos(θ6 + · · ·+ θi−1)

)2
+ 3
(
l6li cos(θ6 + · · ·+ θi−1)

)
b6 + 3b26

]
+
[
(1− l26)

2 − 3(1− l26)b6 + 3b26
]
.

Let

Φ(l, θ, b) =

4∑
i=1

(
lili+1 cos(θi) + bi

)3
lili+1 cos(θi)

+

(
l5l1 cos(θ5 + θ6) + b5

)3
l5l1 cos(θ5 + θ6)

+

4∑
i=1

(
lili+1 cos(θi) + bi+1

)3
lili+1 cos(θi)

+

(
l5l1 cos(θ5 + θ6) + b1

)3
l5l1 cos(θ5 + θ6)

+

5∑
i=1

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]
,
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and

Ψ(l, θ, b) =

5∑
i=1

[(
l6li cos(θ6 + · · ·+ θi−1)

)2
+ 3
(
l6li cos(θ6 + · · ·+ θi−1)

)
b6 + 3b26

)]
+
[
(1− l26)

2 − 3(1− l26)b6 + 3b26
]
,

Then the local TMS potential is
H(l, θ, b) = Φ(l, θ, b) + Ψ(l, θ, b).

Note that Corollary (H.1) implies that Φ(l, θ, b) = H(5) ◦Π6,5(l, θ, b), where H(5) is the TMS potential for n = 5 and
Π6,5 is the projection

Π6,5 : (l1, . . . , l6, θ1, . . . , θ5, b1, . . . , b6) 7→ (l1, . . . , l5, θ1, . . . , θ4, b1, . . . , b5).

Thus, for all a = 1, . . . , 6,

∂

∂la

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

Φ(l, θ, b) = 0,
∂

∂ba

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

Φ(l, θ, b) = 0,

and
∂

∂θa

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

Φ(l, θ, b)

is independent of i. For a = 1, . . . , 5,

∂

∂la
Ψ(l, θ, b) = 2

(
l6la cos(θ6 + · · ·+ θa−1)

)
l6 cos(θ6 + · · ·+ θa−1)

+ 3l6 cos(θ6 + · · ·+ θa−1)b6.

Since l6 = 0 for the 5-gon, for all a = 1, . . . , 5,

∂

∂la

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

Ψ(l, θ, b) = 0.

Compute

∂

∂l6
Ψ(l, θ, b) =

{
5∑

i=1

2
(
l6li cos(θ6 + · · ·+ θi−1)

)
li cos(θ6 + · · ·+ θi−1)

+ 3li cos(θ6 + · · ·+ θi−1)b6

}
− 4(1− l26)l6 + 6l6b6.

Then

∂

∂l6

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

Ψ(l, θ, b) = 3xz

5∑
i=1

cos

(
θ6 + (i− 1) · 2π

5

)

= 3xz

5∑
i=1

cos(θ6) cos

(
(i− 1) · 2π

5

)
− sin(θ6) sin

(
(i− 1) · 2π

5

)

= 3xz

[
cos(θ6)

5∑
i=1

cos

(
(i− 1) · 2π

5

)

− sin(θ6)

5∑
i=1

sin

(
(i− 1) · 2π

5

)]
= 3xz

[
cos(θ6) · 0− sin(θ6) · 0

]
= 0.

For a = 1, . . . , 5,
∂

∂ba
Ψ(l, θ, b) = 0.
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Compute

∂

∂b6
Ψ(l, θ, b) =

5∑
i=1

[
3
(
l6li cos(θ6 + · · ·+ θi−1)

)
+ 6b6

]
− 3(1− l26) + 6b6.

Then

∂

∂b6

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

Ψ(l, θ, b) =

( 5∑
i=1

6z

)
− 3 + 6z

= 36z − 3.

So
∂

∂b6

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

Ψ(l, θ, b) = 0

if and only if z = 1
12 . Note that

∂

∂θ5
Ψ(l, θ, b) = 0

as θ5 is not in Ψl,θ,b. For a = 1, . . . , 4,

∂

∂θa
Ψ(l, θ, b) =

5∑
i=a+1

[
− 2
(
l6li cos(θ6 + · · ·+ θi−1)

)
l6li sin(θ6 + · · ·+ θi−1)

− 3l6li sin(θ6 + · · ·+ θi−1)b6

]
.

Since for the 5-gon, l6 = 0, then for a = 1, . . . , 4,

∂

∂θa

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

Ψ(l, θ, b) = 0.

Compute

∂

∂θ6
Ψ(l, θ, b) =

5∑
i=1

[
− 2
(
l6li cos(θ6 + · · ·+ θi−1)

)
l6li sin(θ6 + · · ·+ θi−1)

− 3l6li sin(θ6 + · · ·+ θi−1)b6

]
.

Since for the 5-gon, l6 = 0, then
∂

∂θ6

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

Ψ(l, θ, b) = 0.

Therefore, the 5-gon with coordinate

l∗ : l1 = · · · = l5 = x ≈ 1.17046, l6 = 0;

θ∗ : θ1 = · · · = θ4 =
2π

5
, θ5 + θ6 =

2π

5
;

b∗ : b1 = · · · = b5 = y ≈ −0.28230, b6 =
1

12
;

is a critical point of H(l, θ, b). Note that this is the 5+-gon defined in Section 3.2. We claim that the TMS potential is
minimally singular in some neighbourhood of 5+-gon in the original parameter space Mr,c(R)× Rc and compute its
local learning coefficient.
Lemma I.1. For c = 6, the 5+-gon with coordinate (l∗, θ∗, b∗) has an open neighbourhood in which the TMS potential
is minimally singular. Moreover, its local learning coefficient is 8.5.

Proof. We compute the Hessian of the TMS potential at 5+-gon in the original parameter space Mr,c(R) × Rc. All
eigenvalues of the Hessian are positive except one zero eigenvalue caused by the O(2) symmetry. Thus, 5+-gon is
minimally singular and has local learning coefficient 17/2 = 8.5.
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Now we discuss the kσ+-gons (in Section 3.2) for k < c. Let B+ ⊂ {k + 1, . . . , c}. Let σ = |B+|. Consider the
k-gon (l∗, θ∗, b∗) with coordinate

l∗ :l1 = · · · = lk = x > 0, lk+1 = · · · = lc = 0;

θ∗ :θ1 = · · · = θk−1 =
2π

c
, θk + · · ·+ θc =

2π

c
;

b∗ :b1 = · · · = bk = y < 0,

for i = k + 1, . . . , c, bi < 0 if i /∈ B+ and bi = z > 0 if i ∈ B+.

Theorem I.1. There is an open neighbourhood of (l∗, θ∗, b∗) in which the TMS potential is

H(l, θ, b) = H(k) ◦Πc,k(l, θ, b) +
(
c− (k + σ)

)
+
∑
i∈B+

H+
i (l, θ, b),

where

1. H(k) is the TMS potential for c = k;

2. Πc,k is the projection:

Πc,k : (l1, . . . , lc, θ1, . . . , θc−1, b1, . . . , bc) 7→ (l1, . . . , lk, θ1, . . . , θk−1, b1, . . . , bk);

3. for each i ∈ B+,

H+
i (l, θ, b) =

∑
j ̸=i

[(
lilj cos(θij)

)2
+ 3
(
lilj cos(θij)

)
bi + 3b2i

]
+
[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i
]
,

where θij denote the angle between Wi and Wj .

Proof. This follows from applying the same argument in the c = 6 case.

Theorem I.2. Let k ∈ Z>4 and s be the unique integer in the interval [k4 − 1, k
4 ). If a k-gon with coordinate

l1 = · · · = lk = x; θ1 = · · · = θk =
2π

k
; b1 = · · · = bk = y

for some x > 0 and y < 0 satisfying

−x2 cos

(
s · 2π

k

)
≤ y

is a critical point of H(l, θ, b) with constraint θ1 + · · ·+ θk = 2π for c = k, then for any integer 0 ≤ σ ≤ c− k, the
kσ+-gons defined in Section 3.2 are critical points of H(l, θ, b) with constraint θ1 + · · ·+ θc = 2π for any c > k.

Proof. This follows from applying the same argument in the c = 6 case.

Remark I.1. In Lemma I.1, we show that the 5+-gon for c = 6 is minimally singular and compute the local learning
coefficient. In general, we do not know whether the kσ+-gons are minimally singular or not for c > k. However, given
a kσ+-gon, the method to check whether it is minimally singular or not is the same as the method used in Lemma
I.1. We compute the Hessian of the TMS potential at each kσ+-gon in the original parameter space Mr,c(R) × Rc.
Then check that the Hessian of the TMS potential is non-degenerate in the direction normal to the tangent space of
kσ+-gons. If this is the case, then we conclude that the kσ+-gon is minimally singular by Morse-Bott lemma.
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J 4-gons

In this section we discuss 4-gons. The subtlety here is that the TMS potential is not analytic at 4-gons. In particular,
the directional Hessian of the TMS potential at 4-gons depends on the direction.

J.1 c = 4

J.1.1 Standard 4-gon

For c = 4, consider the (standard) 4-gon (l∗, θ∗, b∗), where

l∗ = (1, 1, 1, 1), θ∗ =
(π
2
,
π

2
,
π

2
,
π

2

)
, b∗ = (0, 0, 0, 0).

Since H(l, θ, b) ≥ 0 and H(l∗, θ∗, b∗) = 0, we know the 4-gon is a global minimum. Let’s work out the explicit form
of H around the 4-gon (l∗, θ∗, b∗). Since cos(π/2) = 0, the 4-gon is at boundary of some chambers. Let M = {Mij}
be a chamber whose boundary contains the 4-gon (l∗, θ∗, b∗). We claim that each wedge Mij is either empty or
contains one number. Assume, by contradiction, there is a Mij in M contains more than one number. Then we show
that the 4-gon (l∗, θ∗, b∗) is not in the boundary of the chamber described by M. Let ϵθ ∈ R>0 be such that

π − 2ϵθ >
π

2
.

Then for any θ, θ′ ∈
(
π
2 − ϵ, π

2 + ϵ
)
,

θ + θ′ >
π

2
− ϵθ +

π

2
− ϵθ = π − 2ϵθ >

π

2
.

Let ϵl ∈ R>0 be such that 1− ϵl > 0. So (l∗, θ∗, b∗) has an open neighbourhood given by

(1− ϵl, 1 + ϵl)
4 ×

(π
2
− ϵθ,

π

2
+ ϵθ

)3
× R4

which does not intersect the interior of the chamber described by M. Thus, (l∗, θ∗, b∗) is not in the boundary of
the chamber described by M when some of Mij in M contains more than one element. So each wedge Mij in M
contains at most one element. Because of the permutation symmetry, there are four possible M:

M1 = (1) , M2 = (1)
(2)

, M3 = (1)
(3)

, M4 =
(1)
(2)
(3)

.

Since −12 < 0, (l∗, θ∗, b∗) has an open neighbourhood in which

−l2i < bi

for i = 1, 2, 3, 4. Since cos(π) = −1 < 0, the 4-gon (l∗, θ∗, b∗) has an open neighbourhood in which for all
i = 1, 2, 3, 4, if bi > 0, then

lili+2 cos(θi + θi+1) < −bi.

Recall the formula 17 for the local TMS potential in Section G. The 4-gon (l∗, θ∗, b∗) has an open neighbourhood in
which the local TMS potential is

H(l, θ, b) =

4∑
i=1

δ(bi ≤ 0)H−
i (l, θ, b) + δ(bi > 0)H+

i (l, θ, b), (18)

where

H−
i (l, θ, b) = δ(T

(1)
M(i−1)1

)

[
li−1li cos(θi−1) + bi

]3
li−1li cos(θi−1)

+ δ(T
(2)
Mi1

)

[
lili+1 cos(θi) + bi

]3
lili+1 cos(θi)

+

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]
,
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and

H+
i (l, θ, b) = δ(Si(i+1))

[
−b3i

lili+1 cos(θi)

]
+
(
1− δ(Si(i+1))

)[(
lili+1 cos(θi)

)2
+ 3
(
lili+1 cos(θi)

)
bi + 3b2i

]
+

[
−b3i

lili+2 cos(θi + θi+1)

]
+ δ(Si(i+3))

[
−b3i

lili+3 cos(θi+3)

]
+
(
1− δ(Si(i+3))

)[(
lili+3 cos(θi+3)

)2
+ 3
(
lili+3 cos(θi+3)

)
bi + 3b2i

]
+ (1− l2i )

2 − 3(1− l2i )bi + 3b2i

We checked that each term in H−
i (l, θ, b) and H+

i (l, θ, b) has gradient zero when approaching (l∗, θ∗, b∗) in the region
specified by the indicator function associated with it. Thus, the TMS potential is differentiable at the (l∗, θ∗, b∗),
and (l∗, θ∗, b∗) is a critical point. However, the TMS potential is not continuously differentiable twice, i.e. there are
different directions in which directional Hessians are different. We checked that (l∗, θ∗, b∗) is minimally singular in
each subspace with nonempty interior containing (l∗, θ∗, b∗) in the boundary. So we obtain a list {4, 4.5, 5, 5.5} of
local learning coefficient when approached from these different subspaces.

J.1.2 4ϕ−-gon

Let B− ⊂ {1, 2, 3, 4} and ϕ = |B−|. Consider the 4ϕ−-gon (Section 3.2) with coordinate

θ∗ :θ1 = θ2 = θ3 = θ4 =
π

2
;

b∗ :bi < 0 if i ∈ B− and bi = 0 if i /∈ B−;

l∗ :0 < l2i < −bi if i ∈ B− and li = 1 if i /∈ B−.

Since cos(π/2) = 0, the 4ϕ−-gon is on the boundary of some chambers. Let M = {Mij} be a chamber whose
boundary contains 4ϕ−-gon. Using the same arguments in Section J.1.1, we know that each Mij is either empty or
contains one number. Because of the O(2)-symmetry, there are four possible M:

M1 = (1) , M2 = (1)
(2)

, M3 = (1)
(3)

, M4 =
(1)
(2)
(3)

.

For i /∈ B−, we have l2i = 1 > 0 = bi. For i ∈ B−, we have −l2i > bi, −lili+1 cos(θi) = 0 > bi, and
−li−1li cos(θi−1) = 0 > bi. Since cos(π) = −1 < 0, the 4ϕ−-gon has an open neighbourhood in which for all
i = 1, 2, 3, 4, if bi > 0, then

lili1 cos(θi + θi+1) < bi.

So the 4ϕ−-gon has an open neighbourhood in which the local TMS potential is

H(l, θ, b) =

4∑
i=1

δ(bi ≤ 0)H−
i (l, θ, b) + δ(bi > 0)H+

i (l, θ, b), (19)

where

1. if i /∈ B−, then

H−
i (l, θ, b) = δ(T

(1)
M(i−1)1

)

[
li−1li cos(θi−1) + bi

]3
li−1li cos(θi−1)

+ δ(T
(2)
Mi1

)

[
lili+1 cos(θi) + bi

]3
lili+1 cos(θi)

+

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]
,
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and

H+
i (l, θ, b) = δ(Si(i+1))

[
−b3i

lili+1 cos(θi)

]
+
(
1− δ(Si(i+1))

)[(
lili+1 cos(θi)

)2
+ 3
(
lili+1 cos(θi)

)
bi + 3b2i

]
+

[
−b3i

lili+2 cos(θi + θi+1)

]
+ δ(Si(i+3))

[
−b3i

lili+3 cos(θi+3)

]
+
(
1− δ(Si(i+3))

)[(
lili+3 cos(θi+3)

)2
+ 3
(
lili+3 cos(θi+3)

)
bi + 3b2i

]
+ (1− l2i )

2 − 3(1− l2i )bi + 3b2i ;

2. if i ∈ B−, then

H−
i (l, θ, b) = 1,

and

H+
i (l, θ, b) = 0.

If ϕ = 4, then the 4ϕ−-gon has an open neighbourhood in which the TMS potential is the zero function, hence it is a
critical point with local learning coefficient 0. For 0 ≤ ϕ ≤ 3, we checked that each term in H−

i (l, θ, b) and H+
i (l, θ, b)

has gradient zero when approaching the 4ϕ−-gon in the region specified by the indicator function associated with it.
Thus, the TMS potential is differentiable at the 4ϕ−-gon, and the 4ϕ−-gon is a critical point. However, the TMS
potential is not continuously differentiable twice, i.e. there are different directions in which directional Hessians are
different. We checked that the 4ϕ−-gon is minimally singular in each subspace with nonempty interior containing the
4ϕ−-gon in the boundary. So we obtain lists

ϕ = 1 :{3, 3.5, 4, 4.5};
ϕ = 2 :{2, 2.5, 3, 3.5} for B− = {i, i+ 1}, where i = 1, 2, 3, 4,

{2.5, 3, 3.5, 4} for B− = {i, i+ 2}, where i = 1, 2, 3, 4;

ϕ = 3 :{1, 1.5, 2, 2.5};
ϕ = 4 :{0}.

of local learning coefficient for each when approached from these different subspaces.

J.2 c > 4

We analyse four typical 4-gons appearing as critical points of TMS potential when c > 4 in this section. In particular,
we state their coordinates (hence computing their loss), and show they are actually critical points of the TMS potential.
Because of the permutation symmetry, we may assume that 4-gons have θ-coordinate

θ1 = θ2 = θ3 =
π

2
, θ4 + · · ·+ θc =

π

2
.

So for given l1, . . . , lc and biases b1, . . . , bc, there is a set of 4-gons given by (θ4, . . . , θc) with θ4 + · · · + θc = π/2.
As discussing in Appendix J.1, 4-gons are in the boundary of some chambers. Let M = {Mij} be wedges describing
a chamber containing 4-gons in its boundary.

Consider the standard 4-gons with coordinate

l1 = l2 = l3 = l4 = 1, l5 = · · · = lc = 0;

θ1 = θ2 = θ3 =
π

2
, θ4 + · · ·+ θc =

π

2
;

b1 = b2 = b3 = b4 = 0, bk+1, . . . , bc < 0.
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Theorem J.1. For a fixed M, let H(4) denote the TMS potential in some neighbourhood of the standard 4-gon for
c = 4 (Appendix J.1.1). Consider the projection

Πc,4 : (l1, . . . , lc, θ1, . . . , θc−1, b1, . . . , bc) 7→ (l1, . . . , l4, θ1, . . . , θ3, b1, . . . , b4).

The TMS potential in the chamber described by M is

H(l, θ, b) = H(4) ◦Πc,4(l, θ, b) +

c∑
i=5

Gi(l, θ, b) + (c− 4),

where

Gi(l, θ, b) = δ(T
(1)
Mi(c−i+1)

)

[
lil1 cos

(∑
k∈Mi(c−i+1)

θk
)
+ b1

]3
lil1 cos

(∑
k∈Mi(c−i+1)

θk
)

+ δ(T
(1)
Mi(c−i+2)

)

[
lil2 cos

(∑
k∈Mi(c−i+2)

θk
)
+ b2

]3
lil2 cos

(∑
k∈Mi(c−i+2)

θk
)

+ δ(T
(2)
M3(i−3)

)

[
l3li cos

(∑
k∈M3(i−3)

θk
)
+ b3

]3
l3li cos

(∑
k∈M3(i−3)

θk
)

+ δ(T
(2)
M4(i−4)

)

[
l4li cos

(∑
k∈M4(i−4)

θk
)
+ b4

]3
l4li cos

(∑
k∈M4(i−4)

θk
) .

Proof. This theorem follows from the same arguments used in Corollary H.1.

Thus, we conclude that the standard 4-gons are critical points of the TMS potential by checking that each term in
the TMS potential has gradient zero when approaching the standard 4-gons in the region specified by the indicator
function associated to it.

Let B− ⊂ {1, 2, 3, 4}. Let ϕ = |B−|. Consider the 4ϕ−-gons (Section 3.2) with coordinate

θ∗ : θ1 = θ2 = θ3 =
π

2
, θ4 + · · ·+ θc =

π

2
b∗ : for i = 1, 2, 3, 4, bi < 0 if i ∈ B− and bi = 0 if i /∈ B−,

for j = 5, 6, · · · , c, bj < 0;

l∗ : for i = 1, 2, 3, 4, 0 < l2i < −bi if i ∈ B− and li = 1 if i /∈ B−,

for j = 5, 6, . . . , c, lj = 0.

Theorem J.2. For a fixed M, let H(4,−) denote the TMS potential in some neighbourhood of 4ϕ−-gon for c = 4
(Appendix J.1.2). Consider the projection

Πc,4 : (l1, . . . , lc, θ1, . . . , θc−1, b1, . . . , bc) 7→ (l1, . . . , l4, θ1, . . . , θ3, b1, . . . , b4).

The TMS potential in the chamber described by M is

H(l, θ, b) = H(4,−) ◦Πc,4(l, θ, b) +

c∑
i=5

Gi(l, θ, b) + (c− 4),

where Gi(l, θ, b) is defined in Theorem J.1.

Proof. This theorem follows from the same arguments used in Corollary H.1.

Thus, we conclude that the 4ϕ−-gons are critical points of the TMS potential by checking that each term in the TMS
potential has gradient zero when approaching the 4ϕ−-gons in the region specified by the indicator function associated
to it.
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Let B+ ⊂ {5, 6, . . . , c}. Let σ = |B+|. Consider the 4σ+-gons (Section 3.2) with coordinate

l∗ : l1 = l2 = l3 = l4 = 1 > 0, lk+1 = · · · = lc = 0;

θ∗ : θ1 = θ2 = θ3 =
π

2
, θ4 + · · ·+ θc =

π

2
;

b∗ : b1 = b2 = b3 = b4 = 0,

for i = 5, 6, . . . , c, bi < 0 if i /∈ B+ and bi =
1

2c
if i ∈ B+.

Theorem J.3. For a fixed M, let H(4) denote the TMS potential in some neighbourhood of the standard 4-gon for
c = 4 (Appendix J.1.1). Consider the projection

Πc,4 : (l1, . . . , lc, θ1, . . . , θc−1, b1, . . . , bc) 7→ (l1, . . . , l4, θ1, . . . , θ3, b1, . . . , b4).

The TMS potential in the chamber described by M is

H(l, θ, b) = H(4) ◦Πc,4(l, θ, b) +

c∑
i=5

Gi(l, θ, b) +
(
c− (4 + σ)

)
+
∑
i∈B+

H+
i (l, θ, b),

where Gi(l, θ, b) is defined in Theorem J.1, and for each i ∈ B+,

H+
i (l, θ, b) =

∑
j ̸=i

[(
lilj cos(θij)

)2
+ 3
(
lilj cos(θij)

)
bi + 3b2i

]
+
[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i
]
,

where θij denote the angle between Wi and Wj .

Proof. This follows from the same arguments in Theorem I.1.

Thus, we conclude that the 4σ+-gons are critical points of the TMS potential by checking that each term in the TMS
potential has gradient zero when approaching the 4σ+-gons in the region specified by the indicator function associated
to it.

Let B− ⊂ {1, 2, 3, 4} and B+ ⊂ {5, 6, · · · , c}. Consider the 4σ+,ϕ−-gon (Section 3.2) with coordinate

θ∗ : θ1 = θ2 = θ3 =
π

2
, θ4 + · · ·+ θc =

π

2
b∗ : for i = 1, 2, 3, 4, bi < 0 if i ∈ B− and bi = 0 if i /∈ B−,

for j = 5, 6, · · · , c, bj < 0 if j /∈ B+ and bj =
1

2c
if j ∈ B+;

l∗ : for i = 1, 2, 3, 4, 0 < l2i < −bi if i ∈ B− and li = 1 if i /∈ B−,

for j = 5, 6, . . . , c, lj = 0.

Theorem J.4. For a fixed M, let H(4,−) denote the TMS potential in some neighbourhood of the 4ϕ−-gon for c = 4
(Appendix J.1.2). Consider the projection

Πc,4 : (l1, . . . , lc, θ1, . . . , θc−1, b1, . . . , bc) 7→ (l1, . . . , l4, θ1, . . . , θ3, b1, . . . , b4).

The TMS potential in the chamber described by M is

H(l, θ, b) = H(4,−) ◦Πc,4(l, θ, b) +

c∑
i=5

Gi(l, θ, b) +
(
c− (4 + σ)

)
+
∑
i∈B+

H+
i (l, θ, b),

where Gi(l, θ, b) is defined in Theorem J.1, and for each i ∈ B+,

H+
i (l, θ, b) =

∑
j ̸=i

[(
lilj cos(θij)

)2
+ 3
(
lilj cos(θij)

)
bi + 3b2i

]
+
[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i
]
,

where θij denote the angle between Wi and Wj .
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Proof. This follows from the same arguments in Theorem I.1.

Thus, we conclude that the 4σ+,ϕ−-gons are critical points of the TMS potential by checking that each term in the
TMS potential has gradient zero when approaching the 4σ+,ϕ−-gons in the region specified by the indicator function
associated to it.
Remark J.1. For c > 4, we do not know the theoretical local learning coefficients of these 4-gons. In Appendix K, we
provide an estimation of local learning coefficients for various 4-gons when c = 6.
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Figure K.1: Loss trace plots for samples used for λ̂ produced via SGLD sampling. The left plot show SGLD chains
that are all “healthy” and the right plot shows a trajectory that escapes the phase of the initialising critical point (loss
indicated by red horizontal line) to another phase with lower loss. To obtain the estimates λ̂ listed in Table K.1, such
unhealthy chains are removed from consideration.

K Details of local learning coefficient estimation

In this section, we discuss technical details and caveats about the values of the local learning coefficient estimates λ̂
given throughout the paper. It was claimed in Lau et al. (2023) that the λ̂ algorithm is valid for comparing or ordering
critical points by their level of degeneracy. Obtaining the correct local learning coefficient can prove challenging. For
TMS, we find that

• The ordering of λ̂ for different critical points lines up with the theoretical prediction.

• For critical points with low loss such as 6, 5 and 5+-gon depicted in Figure A.2, the λ̂ values are close to
theoretically derived values.

• However, for critical points with higher loss, mis-configured SGLD step size used in the algorithm can caus-
ing the sample path itself to undergo a phase transition to a lower loss state. See the diagnostic trace plot on
the right of Figure K.1 for an example where SGLD trajectory drop to a different phase. This is the reason
for negative λ̂ values shown in Figure 3, in which we opted to use a uniform set of SGLD hyperparameters
since we cannot a priori predict which critical point an SGD trajectory will visit.

• Lowering SGLD step size can ameliorate this issue, at the cost of increasing the required number of sampling
steps needed.

Table K.1 shows a set of λ̂ values computed using bespoke SGLD step size (explained below) for each group of 3
critical points with similar loss (again c.f. Figure A.2. Specifically, we take the dataset size n = 5000, and SGLD
hyperparameters γ = 0.1, number of steps = 10000.

Furthermore, for each critical point, we run 10 independent SGLD chains and discard any chain where more than 5%

of the samples have loss values that are lower than the critical point itself. The λ̂ estimate and the standard deviation
are then calculated from the remaining chains. The SGLD step size is manually chosen so that the majority of chains
in each group passes the test above.
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Critical point Estimated λ̂ (std) SGLD step size

4−−−− 0.000 (0.00) 0.0000005

4+−−−− 0.540 (0.16) 0.0000005

4++−−−− 0.998 (0.54) 0.0000005

4−−− 1.024 (0.74) 0.000001

4+−−− 1.619 (0.89) 0.000001

4++−−− 1.899 (0.76) 0.000001

4−− 1.689 (0.88) 0.000001

4+−− 2.096 (1.00) 0.000001

4++−− 2.597 (0.88) 0.000001

4− 2.991 (0.35) 0.000005

4+− 3.393 (0.65) 0.000005

4++− 4.097 (0.65) 0.000005

4 5.297 (0.04) 0.00001

4+ 5.761 (1.53) 0.00001

4++ 6.203 (0.99) 0.00001

5 7.705 (0.85) 0.00005

5+ 9.906 (1.27) 0.00005

6 9.027 (0.59) 0.00005

Table K.1: λ̂ for known critical points in r = 2, c = 6, their standard deviation across viable SGLD chains and the
SGLD step size used.
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